Skip to main content
Log in

Optical Properties of Noble Metal Clusters as a Function of the Size: Comparison between Experiments and a Semi-Quantal Theory

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The optical properties of noble metal clusters are measured and compared in the size range 1.4–7 nm in diameter. The clusters of copper, silver and gold are produced by the same experimental technique, the deposition of preformed clusters in a transparent matrix. The size dependence is found to be different for the three metals. As the size decreases, the surface plasmon resonance is only slightly blue-shifted for silver, more strongly blue-shifted and damped for gold while this peak resonance vanishes for copper. We show that these results cannot be interpreted by a simple classical theory. Since ab initio calculations are not possible in this size range, we obtain a complete theoretical description of these optical properties through the same semi-quantal model for the three metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kreibig U, Vollmer M (1995). Optical properties of metal clusters. Springer, Berlin, Heidelberg, New York

    Book  Google Scholar 

  2. Klar T, Perner M, Grosse S, v. Plessen G, Spirkl W, Feldman J (1998). Phys Rev Lett 80:4249

    Article  CAS  Google Scholar 

  3. Ditlbacher H, Krenn JR, Schider G, Leitner A, Aussenegg FR (2002). Appl Phys Lett 81:1762

    Article  CAS  Google Scholar 

  4. Boyer D, Tamarat P, Maali A, Lounis B, Orrit M (2002). Science 297:1160

    Article  CAS  Google Scholar 

  5. Cogswell CG, Hamilton DK, Sheppard CJR, Microsc J (1992). 165:103

  6. Heer WAD (1993). Rev Mod Phys 65:611

    Article  Google Scholar 

  7. Wang CRC, Pollack S, Kappes MM (1990). Chem Phys Lett 166:26

    Article  CAS  Google Scholar 

  8. Blanc J, Bonacic-Koutecky V, Broyer M, Chevaleyre J, Dugourd P, Koutecky J, Scheuch C, Wolf JP, Wöste L (1992). J Chem Phys 96:1793

    Article  CAS  Google Scholar 

  9. Tiggesbäumker J, Köller L, Meiwes-Broer KH, Liebsch A (1993). Phys Rev A 48:R1749

    Article  Google Scholar 

  10. Fedrigo S, Harbich W, Buttet J (1993). Phys Rev B 47:10706

    Article  CAS  Google Scholar 

  11. Liebsch A (1993). Phys Rev Let 71:145

    Article  CAS  Google Scholar 

  12. Palpant B, Prével B, Lermé J, Cottancin E, Pellarin M, Treilleux M, Pérez A, Vialle JL, Broyer M (1998). Phys Rev B 53:1963

    Article  Google Scholar 

  13. Lermé J, Palpant B, Prével B, Pellarin M, Treilleux M, Pérez A, Vialle JL, Broyer M (1998). Phys Rev Lett 80:5105

    Article  Google Scholar 

  14. Gaudry M, Lermé J, Cottancin E, Pellarin M, Vialle J, Broyer M, Prével B, Treilleux M, Mélinon P (2001). Phys Rev B 64:085407

    Article  Google Scholar 

  15. Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar I, Whetten RL (1997). J Phys Chem B 101:3706

    Article  CAS  Google Scholar 

  16. Lisiecki I, Pileni MP (1995). J Phys Chem 99:5077

    Article  CAS  Google Scholar 

  17. Celep G, Cottancin E, Lermé J, Pellarin M, Arnaud L, Huntzinger JR, Vialle JL, Broyer M, Palpant B, Boisron O, Mélinon P (2004). Phys Rev B 70:165409

    Article  Google Scholar 

  18. Bonacic-Koutecky V, Fantucci P, Koutecky J (1991). Chem Rev 91:1035

    Article  CAS  Google Scholar 

  19. Bonacic-Koutecky V, Veyret V, Mitric R (2001). J Chem Phys 115:10450

    Article  CAS  Google Scholar 

  20. Lermé J (2000). Eur Phys J D 10:265

    Article  Google Scholar 

  21. Mie G (1908). Ann Phys 25:377

    Article  CAS  Google Scholar 

  22. Blase X, Ordejon P (2004). Phys Rev B 69:085111

    Article  Google Scholar 

  23. Liebsch A (1993). Phys Rev B 48:11317

    Article  CAS  Google Scholar 

  24. Krésin VV (1995). Phys Rev B 51:1844

    Article  Google Scholar 

  25. Serra L, Rubio A (1997). Z Phys D 40:262

    Article  CAS  Google Scholar 

  26. Stott MJ, Zaremba E (1980). Phys Rev A 21:12

    Article  CAS  Google Scholar 

  27. Zangwill A, Soven P (1980). Phys Rev A 21:1561

    Article  CAS  Google Scholar 

  28. Moseler M, Häkkinen H, Landman U (2001). Phys Rev Lett 87:053401

    Article  CAS  Google Scholar 

  29. Yannouleas C, Broglia RA (1991). Phys Rev A 44:5793

    Article  CAS  Google Scholar 

  30. Kawabata A, Kubo R (1996). J Phys Soc Jpn 21:1765

    Article  Google Scholar 

  31. Yannouleas C (1998). Phys Rev B 58:6748

    Article  CAS  Google Scholar 

  32. Serra L, Rubio A (1997). Phys Rev Lett 78:1428

    Article  CAS  Google Scholar 

  33. Furche F, Ahlrichs R, Weis P, Jacob C, Gilb S, Bierweiler T, Kappes M (2002). J Chem Phys 117:6982

    Article  CAS  Google Scholar 

  34. Häkkinen H, Yoon B, Landman U, Li X, Zhai HJ, Wang LS (2003). J Phys Chem A 107:6168

    Article  Google Scholar 

  35. Arbouet A, Chistofilos D, Fatti ND, Vallée F, Huntzinger JR, Arnaud L, Billaud P, Broyer M (2004). Phys Rev Lett 93:127401

    Article  CAS  Google Scholar 

  36. Alayan R, Arnaud L, Bourgey A, Broyer M, Cottancin E, Huntzinger JR, Lermé J, Vialleb JL, Broyer M, Guiraud G (2004). Rev Sci Instrum 75:2461

    Article  CAS  Google Scholar 

  37. Palik ED (1985/1991). Handbook of optical constants of solids. Academic, New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Broyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cottancin, E., Celep, G., Lermé, J. et al. Optical Properties of Noble Metal Clusters as a Function of the Size: Comparison between Experiments and a Semi-Quantal Theory. Theor Chem Acc 116, 514–523 (2006). https://doi.org/10.1007/s00214-006-0089-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-006-0089-1

Keywords

Navigation