Skip to main content
Log in

An overview of the roles of critical insiders and outsiders for reciprocal plant–microbe interaction: Heterotrimeric G-proteins, small RNAs, pollinators, microalgae

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Plants are exposed to various abiotic stresses, which lead to crop losses and become a significant threat to agriculture worldwide. To survive, they have developed a range of mechanisms throughout their life cycle. While they develop immunity against stressors through their metabolic and hormonal pathways, as another strategy, they can also modify their environment by interacting with symbiotic microorganisms involved in the critical pathways for plant health. Several beneficial microorganisms can be used as plant stimulants to augment plant health and growth. Therefore, elucidating the cause-effect relationship and possible roles of critical players during plant–microbe interaction may help us better understand the usage of microorganisms for plant benefits. The presented review discusses the molecular mechanisms regulating the responses of plants and their environment during plant–microbe interactions. We focus on the potential roles of plant heterotrimeric G-proteins and small RNAs as inside players and the possible roles, connections, and effects of microalgae and pollinators as outside players/elements during plant–microbe interactions under abiotic stress. Utilizing microbial inoculants with a better combination of endophytes based on various plant species/populations under different environmental conditions is critical for successful field applications. The current knowledge in this review may provide a detailed assessment to gain insight into unraveling different parameters for efficient use of the endophytes on plants/crops to address food security challenges and mitigate the impact of climate change on agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  • Abraham PE, Garcia BJ, Gunter LE, Jawdy SS, Engle N, Yang X et al (2018) Quantitative proteome profile of water deficit stress responses in eastern cottonwood (Populus deltoides) leaves. PLoS ONE 13:e0190019

    Article  PubMed  PubMed Central  Google Scholar 

  • Adler LS (2000) The ecological significance of toxic nectar. Oikos 91:409–420

    Article  ADS  Google Scholar 

  • Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D et al (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14:e1002352

    Article  PubMed  PubMed Central  Google Scholar 

  • Aizenberg-Gershtein Y, Izhaki I, Halpern M (2013) Do honeybees shape the bacterial community composition in floral nectar? PLoS One 8:e67556

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Aliabadi DE, Thrän D, Bezama A, Avsar B (2022) A systematic analysis of bioenergy potentials for fuels and electricity in Turkey: A bottom-up modeling. Affordable and Clean Energy 295. https://doi.org/10.3390/books978-3-03897-777-3-10

  • Amari K, Burgos L, Pallas V, Sanchez-Pina MA (2007) Prunus necrotic ringspot virus early invasion and its effects on apricot pollen grain performance. Phytopathology 97:892–899

    Article  PubMed  Google Scholar 

  • Amavizca E, Bashan Y, Ryu CM, Farag MA, Bebout BM, de-Bashan LE (2017) Enhanced performance of the microalga Chlorella sorokiniana remotely induced by the plant growth-promoting bacteria Azospirillum brasilense and Bacillus pumilus. Sci Rep 7:41310

  • Arroussi HE, Benhima R, Elbaouchi A, Sijilmassi B, Mernissi NE, Aafsar A et al (2018) Dunaliella salina exopolysaccharides: A promising biostimulant for salt stress tolerance in tomato (Solanum lycopersicum). J Appl Phycol 30:2929–2941

    Article  Google Scholar 

  • Avşar B (2017) Investigation of structural properties of heterotrimeric G-Proteins γ subunits in plants. Doctoral dissertation, Sabanci University

  • Avşar B, Esmaeilialiabadi D (2017) Identification of microRNA elements from genomic data of European hazelnut (Corylus avellana L.) and its close relatives. Plant Omics 10:190–196

    Article  Google Scholar 

  • Avsar B, Zhao Y, Li W, Lukiw WJ (2020) Atropa belladonna expresses a microRNA (aba-miRNA-9497) highly homologous to Homo sapiens miRNA-378 (hsa-miRNA-378); both miRNAs target the 3′-Untranslated region (3′-UTR) of the mRNA encoding the neurologically relevant, zinc-finger transcription factor ZNF-691. Cell Mol Neurobiol 40:179–188

    Article  CAS  PubMed  Google Scholar 

  • Avsar B (2022) Effective strategies for heterologous expression of plant heterotrimeric g-protein γ Subunits without Gβ subunit partners. Protein Pept Lett 29:429–439

    Article  CAS  PubMed  Google Scholar 

  • Babu S, Bidyarani N, Chopra P, Monga D, Kumar R, Prasanna R et al (2015) Evaluating microbe-plant interactions and varietal differences for enhancing biocontrol efficacy in root rot disease challenged cotton crop. Eur J Plant Pathol 142:345–362

    Article  CAS  Google Scholar 

  • Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM (2013) Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic related compounds predominantly modulate the soil microbiome. J Biol Chem 288:4502–4512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakker PA, Pieterse CM, De Jonge R, Berendsen RL (2018) The soil-borne legacy. Cell 172:1178–1180

    Article  CAS  PubMed  Google Scholar 

  • Baltruschat H, Fodor J, Harrach BD, Niemczyk E, Barna B, Gullner G et al (2008) Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. New Phytol 180:501–510

    Article  CAS  PubMed  Google Scholar 

  • Bao Y, Howell SH (2017) The unfolded protein response supports plant development and defense as well as responses to abiotic stress. Front Plant Sci 8:344

    Article  PubMed  PubMed Central  Google Scholar 

  • Barber NA, Soper Gorden NL (2015) How do belowground organisms influence plant–pollinator interactions? J Plant Ecol 8:1–11

    Article  Google Scholar 

  • Baruzzi F, Cefola M, Carito A, Vanadia S, Calabrese N (2012) Changes in bacterial composition of zucchini flowers exposed to refrigeration temperatures. Sci World J vol 2012

  • Bender KW, Zipfel C (2018) Plant G-protein activation: Connecting to plant receptor kinases. Cell Res 28:697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berendsen RL, Vismans G, Yu K, Song Y, de Jonge R, Burgman WP et al (2018) Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J 12:1496–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergman B, Johansson C, Soderback E (1992) Tansley Review No. 42. The Nostoc-Gunnera symbiosis. New Phytol 122:379–400

    Article  CAS  PubMed  Google Scholar 

  • Bisht NC, Jez JM, Pandey S (2011) An elaborate heterotrimeric G-protein family from soybean expands the diversity of plant G-protein networks. New Phytol 190:35–48

    Article  CAS  PubMed  Google Scholar 

  • Blaby-Haas CE, Merchant SS (2019) Comparative and functional algal genomics. Annu Rev Plant Biol 70:605–638

    Article  CAS  PubMed  Google Scholar 

  • Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouffaud M, Renoud S, Dubost A, Moënne-Loccoz Y, Muller D (2018) 1-aminocyclopropane-1-carboxylate deaminase producers associated to maize and other Poaceae species. Microbiome 6:1–12

  • Bouskill NJ, Wood TE, Baran R, Ye Z, Bowen BP, Lim H (2016) Belowground response to drought in a tropical forest soil. I. Changes in microbial functional potential and metabolism. Front Microbiol 7:525

  • Bovin AD, Leppyanen IV, Pavlova OA, Dolgikh EA (2020) The role of heterotrimeric G proteins in the control of symbiosis development in legume plants. In: BIO Web of Conferences; EDP Sciences 23:03004

  • Bristow PR, Martin RR (1999) Transmission and the role of honeybees in field spread of blueberry shock Ilarvirus, a pollen-borne virus of highbush blueberry. Phytopathology 89:124–130

    Article  CAS  PubMed  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Burkle LA, Irwin RE (2008) The effects of nutrient addition on floral characters and pollination in two subalpine plants, Ipomopsis aggregate and Linum lewisii. Plant Ecol 203:83–98

    Article  Google Scholar 

  • Carrell AA, Veličković D, Lawrence TJ, Bowen BP, Louie KB, Carper DL et al (2022) Novel metabolic interactions and environmental conditions mediate the boreal peatmoss-cyanobacteria mutualism. ISME J 16:1074–1085

    Article  CAS  PubMed  Google Scholar 

  • Castrillo G, Teixeira PJ, Paredes SH, Law TF, De Lorenzo L, Feltcher ME et al (2017) Root microbiota drive direct integration of phosphate stress and immunity. Nature 543:513–518

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Chakravorty D, Gookin TE, Milner MJ, Yu Y, Assmann SM (2015) Extra-large G proteins expand the repertoire of subunits in Arabidopsis heterotrimeric G protein signaling. Plant Physiol 169:512–529

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen L, Luan Y, Zhai J (2015) Sp-miR396a-5p acts as a stress-responsive genes regulator by conferring tolerance to abiotic stresses and susceptibility to Phytophthora nicotianae infection in transgenic tobacco. Plant Cell Rep 34:2013–2025

    Article  CAS  PubMed  Google Scholar 

  • Chen JG, Gao Y, Jones AM (2006) Differential roles of Arabidopsis heterotrimeric G-protein subunits in modulating cell division in roots. Plant Physiol 141:887–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T, Nomura K, Wang X, Sohrabi R, Xu J, Yao L et al (2020) A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580:653–657

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Cheng AP, Kwon S, Adeshara T, Göhre V, Feldbrügge M, Weiberg A (2023) Extracellular RNAs released by plant-associated fungi: From fundamental mechanisms to biotechnological applications. Appl Microbiol Biotechnol  107(19):5935–5945. Springer

  • Chiaiese P, Corrado G, Colla G, Kyriacou MC, Rouphael Y (2018) Renewable sources of plant biostimulation: Microalgae as a sustainable means to improve crop performance. Front Plant Sci 9:1782

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho SM, Kang BR, Kim YC (2013) Transcriptome analysis of induced systemic drought tolerance elicited by Pseudomonas chlororaphis O6 in Arabidopsis thaliana. Plant Pathol J 29:209–220

    Article  PubMed  PubMed Central  Google Scholar 

  • Choleva B, Bileva T, Tsvetkov J (2007) Organo-biological means and methods for control of plant parasitic nematodes as alternative of agrochemicals. Ecol Fut 6:43–49

    Google Scholar 

  • Choudhury SR, Pandey S (2016) Interaction of heterotrimeric G-protein components with receptor-like kinases in plants: An alternative to the established signaling paradigm? Mol. Plant 9:1093–1095

    Google Scholar 

  • Ciftci C, Tekdal D, Cetiner S (2021) The importance of plant growth–promoting rhizobacteria for plant productivity. Abiotic Stress Legumes 69–80

  • Combier JP, Frugier F, de Billy F, Boualem A, El-Yahyaoui F et al (2006) MtHAP2–1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev 20:3084–3088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras J, Mata T, Bermúdez S, Caetano N, Chandra R, García S et al (2019) Symbiotic co-culture of Scenedesmus sp. and Azospirillum brasilense on N-deficient media with biomass production for biofuels. Sustainability 11:707

  • Cordero J, Garbayo I, Cuaresma M, Montero Lobato Z, González-delValle MA, Vílchez C (2016) Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Mar Drugs 14:100

    Article  Google Scholar 

  • Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93

    Article  CAS  PubMed  ADS  Google Scholar 

  • Cuddy WS, Neilan BA, Gehringer MM (2012) Comparative analysis of cyanobacteria in the rhizosphere and as endosymbionts of cycads in drought affected soils. FEMS Microbiol Ecol 80:204–215

    Article  CAS  PubMed  Google Scholar 

  • Cullen NP, Fetters AM, Ashman TL (2021) Integrating microbes into pollination. Curr Opin Insect Sci 44:48–54

    Article  PubMed  Google Scholar 

  • Debnath M, Bhadury P (2016) Adaptive responses and arsenic transformation potential of diazotrophic Cyanobacteria isolated from rice fields of arsenic affected Bengal Delta Plain. J Appl Phycol 28:2777–2792

    Article  CAS  Google Scholar 

  • de Vega C, Álvarez-Pérez S, Albaladejo RG, Steenhuisen SL, Lachance MA, Johnson SD et al (2021) The role of plant–pollinator interactions in structuring nectar microbial communities. J Ecol 109:3379–3395

    Article  Google Scholar 

  • Dudareva N, Pichersky E (2006) Biology of Floral Scent. CRC Press, Boca Raton FL

    Book  Google Scholar 

  • Elster J (2002) Ecological classification of terrestrial algal communities in polar environments: dedicated to Professor Josef Svoboda on the occasion of his 70th birthday. Geoecology of Antarctic ice-free coastal landscapes pp 303–326. Springer

  • Epihov DZ, Saltonstall K, Batterman SA, Hedin LO, Hall JS, Van Breugel M et al (2021) Legume–microbiome interactions unlock mineral nutrients in regrowing tropical forests. PNAS 118(11):e2022241118

  • Escudero V, Torres MÁ, Delgado M, Sopeña-Torres S, Swami S, Morales J et al (2019) Mitogen-activated protein kinase phosphatase 1 (MKP1) negatively regulates the production of reactive oxygen species during Arabidopsis immune responses. Mol Plant Microbe Interact 32:464–478

    Article  PubMed  Google Scholar 

  • Faegri K, Van Der Pijl L (2013) Principles of pollination ecology. Elsevier

  • Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM et al (2007) High-throughput sequencing of Arabidopsis microRNAs: Evidence for frequent birth and death of MIRNA genes. PLoS One 2:e219

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Feng Q, Li Y, Zhao ZX, Wang WM (2021) Contribution of small RNA pathway to interactions of rice with pathogens and insect pests. Rice 14:1–15

    Article  Google Scholar 

  • Figueroa LL, Blinder M, Grincavitch C, Jelinek A, Mann EK, Merva LA (2019) Bee pathogen transmission dynamics: Deposition, persistence and acquisition on flowers. Proc R Soc B 286:20190603

    Article  PubMed  PubMed Central  Google Scholar 

  • Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MT (2018) Assembly and ecological function of the root microbiome across angiosperm plant species. PNAS 115:E1157–E1165

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Fitzpatrick CR, Schneider AC (2020) Unique bacterial assembly, composition, and interactions in a parasitic plant and its host. J Exp Bot 71:2198–2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkel OM, Salas-González I, Castrillo G, Spaepen S, Law TF, Teixeira PJPL et al (2019) The effects of soil phosphorus content on plant microbiota are driven by the plant phosphate starvation response. PLoS Biol 17:e3000534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fouda A, Hassan SED, Eid AM, El-Din Ewais E (2019) The interaction between plants and bacterial endophytes under salinity stress. In: Endophytes and Secondary Metabolites; Springer Cham, Switzerland, pp 1–17

  • Francis JS, Tatarko AR, Richman SK, Vaudo AD, Leonard AS (2021) Microbes and pollinator behavior in the floral marketplace. Curr Opin Insect Sci 44:16–22

    Article  PubMed  Google Scholar 

  • Fuchs B, Krauss J (2019) Can Epichloë endophytes enhance direct and indirect plant defence? Fungal Ecol 38:98–103

    Article  Google Scholar 

  • Fujisawa Y, Kato H, Iwasaki Y (2001) Structure and function of heterotrimeric G proteins in plants. Plant Cell Physiol 42:789–794

    Article  CAS  PubMed  Google Scholar 

  • Gantar M (2000) Mechanical damage of roots provides enhanced colonization of the wheat endorhizosphere by the dinitrogen-fixing cyanobacterium Nostoc sp. strain 2S9B. Biol Fertil Soils 32:250–255

    Article  Google Scholar 

  • García-Fraile P, Carro L, Robledo M et al (2012) Rhizobium promotes non-legumes growth and quality in several production steps: Towards a biofertilization of edible raw vegetables healthy for humans. PLoS One 7:e38122

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Gaube P, Junker RR, Keller A (2021) Changes amid constancy: Flower and leaf microbiomes along land use gradients and between bioregions. Basic Appl Ecol 50:1–15

    Article  Google Scholar 

  • Gildow FE (1983) Influence of barley yellow dwarf virus-infected oats and barley on morphology of aphid vectors. Phytopathology 73:1196–1199

    Article  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Gougoulias C, Clark JM, Shaw LJ (2014) The role of soil microbes in the global carbon cycle: Tracking the below-ground microbial processing of plant-derived carbon for manipulating carbon dynamics in agricultural systems. J Sci Food Agric 94:2362–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groen SC, Jiang S, Murphy AM, Cunniffe NJ, Westwood JH, Davey MP et al (2016) Virus infection of plants alters pollinator preference: A payback for susceptible hosts? PLoS Pathog 12:1–28

    Article  Google Scholar 

  • Guo S, Wang P, Wang X, Zou M, Liu C, Hao J (2020) Microalgae as biofertilizer in modern agriculture. In: Microalgae Biotechnology for Food, Health and High Value Products. Springer, pp 397–411

  • Gwata ET, Wofford DS, Pfahler PL et al (2003) Pollen morphology and in vitro germination characteristics of nodulating and nonnodulating soybean (Glycine max L.) genotypes. Theor Appl Genet 106:837–839

    Article  CAS  PubMed  Google Scholar 

  • Hacquard S, Spaepen S, Garrido-Oter R, Schulze-Lefert P (2017) Interplay between innate immunity and the plant microbiota. Annu Rev Phytopathol 55:565–589

    Article  CAS  PubMed  Google Scholar 

  • Hackenberg D, McKain MR, Lee SG, Roy Choudhury S, McCann T, Schreier S et al (2017) Gα and regulator of G-protein signaling (RGS) protein pairs maintain functional compatibility and conserved interaction interfaces throughout evolution despite frequent loss of RGS proteins in plants. New Phytol 216:562–575

    Article  CAS  PubMed  Google Scholar 

  • Hafeez M, Qasim M, Ali S, Yousaf HK, Waqas M, Ali E et al (2020) Expression and functional analysis of P450 gene induced tolerance/resistance to lambda-cyhalothrin in quercetin fed larvae of beet armyworm Spodoptera exigua (Hübner). Saudi J Biol Sci 27:77–87

    Article  CAS  PubMed  Google Scholar 

  • Hamouda RA, El-Ansary M (2017) Potential of Plant-Parasitic Nematode Control in Banana Plants by Microalgae as a New Approach Towards Resistance. Egypt J Biol Pest Control 27:165–172

    Google Scholar 

  • Han J, Zhang L, Wang S, Yang G, Zhao L, Pan K (2016) Co-culturing bacteria and microalgae in organic carbon containing medium. J Biol Res 23:8

    Google Scholar 

  • Herren CM, McMahon KD (2018) Keystone taxa predict compositional change in microbial communities. Environ Microbiol 20:2207–2217

    Article  PubMed  Google Scholar 

  • Herrera CM, Pozo MI (2010) Nectar yeasts warm the flowers of a winter blooming plant. Proc R Soc B Biol Sci 277:1827–1834

    Article  Google Scholar 

  • Hietaranta E, Juottonen H, Kytöviita MM (2023) Honeybees affect floral microbiome composition in a central food source for wild pollinators in boreal ecosystems. Oecologia 201:59–72

    Article  PubMed  ADS  Google Scholar 

  • Higgins JB, Casey PJ (1994) In vitro processing of recombinant G protein gamma subunits. Requirements for assembly of an active beta gamma complex. J Biol Chem 269(12):9067–9073

  • Hodge S, Powell G (2010) Conditional facilitation of an aphid vector, Acyrthosiphon pisum, by the plant pathogen, pea enation mosaic virus. J Insect Sci 10:155

    Article  PubMed  PubMed Central  Google Scholar 

  • Hofferek V, Mendrinna A, Gaude N, Krajinski F, Devers EA (2014) MiR171h restricts root symbioses and shows like its target NSP2 a complex transcriptional regulation in Medicago truncatula. BMC Plant Biol 14:199

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoover SE, Ladley JJ, Shchepetkina AA et al (2012) Warming, CO2, and nitrogen deposition interactively affect a plant-pollinator mutualism. Ecol Lett 15:227–234

    Article  PubMed  Google Scholar 

  • Huang L, Yin X, Sun X, Yang J, Rahman M, Chen Z et al (2018) Expression of a grape VqSTS36-increased resistance to powdery mildew and osmotic stress in Arabidopsis but enhanced susceptibility to Botrytis cinerea in Arabidopsis and tomato. Int J Mol Sci 19:E2985

    Article  Google Scholar 

  • Huang CY, Wang H, Hu P, Hamby R, Jin H (2019) Small RNAs–big players in plant-microbe interactions. Cell Host Microbe 26:173–182

    Article  CAS  PubMed  Google Scholar 

  • Hussain SS, Mehnaz S, Siddique KH (2018) Harnessing the plant microbiome for improved abiotic stress tolerance. In: Plant microbiome: Stress response. Springer, pp 21–43

  • Isogai M, Yoshida T, Nakanowatari C, Yoshikawa N (2014) Penetration of pollen tubes with accumulated Raspberry bushy dwarf virus into stigmas is involved in initial infection of maternal tissue and horizontal transmission. Virology 452:247–253

    Article  PubMed  Google Scholar 

  • Isogai M, Yoshida T, Shimura T, Yoshikawa N (2015) Pollen tubes introduce Raspberry bushy dwarf virus into embryo sacs during fertilization processes. Virology 484:341–345

    Article  CAS  PubMed  Google Scholar 

  • Jacquemyn H, Lenaerts M, Tyteca D, Lievens B (2013) Microbial diversity in the floral nectar of seven Epipactis (Orchidaceae) species. MicrobiologyOpen 2:644–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagadeeswaran G, Saini A, Sunkar R (2009) Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 229:1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Johnson AL, Fetters AM, Ashman TL (2017) Considering the unintentional consequences of pollinator gardens for urban native plants: Is the road to extinction paved with good intentions? New Phytol 215:1298–1305

    Article  CAS  PubMed  Google Scholar 

  • Jones P, Garcia BJ, Furches A, Tuskan GA, Jacobson D (2019) Plant host-associated mechanisms for microbial selection. Front Plant Sci 862. Frontiers

  • Jose J, Choudhury SR (2020) Heterotrimeric G-proteins mediated hormonal responses in plants. Cell Signal 76:109799

    Article  CAS  PubMed  Google Scholar 

  • Junior MdAL, Lima A, Arruda J, Smith D (2005) Effect of root temperature on nodule development of bean, lentil and pea. Soil Biol Biochem 37:235–239

    Article  Google Scholar 

  • Junker RR, Loewel C, Gross R, Dötterl S, Keller A, Blüthgen N (2011) Composition of epiphytic bacterial communities differs on petals and leaves. Plant Biol 13:918–924

    Article  CAS  PubMed  Google Scholar 

  • Junker RR, Keller A (2015) Microhabitat heterogeneity across leaves and flower organs promotes bacterial diversity. FEMS Microbiol Ecol 91:9

    Article  Google Scholar 

  • Juurakko CL, diCenzo GC, Walker VK (2021) Cold acclimation in Brachypodium is accompanied by changes in above-ground bacterial and fungal communities. Plants 10:2824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakumanu ML, Reeves AM, Anderson TD, Rodrigues RR, Williams MA (2016) Honey bee gut microbiome is altered by in-hive pesticide exposures. Front Microbiol 7:1255

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang Y, Kim M, Shim C, Bae S, Jang S (2021) Potential of algae–bacteria synergistic effects on vegetable production. Front Plant Sci 12:656662

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapoore RV, Wood EE, Llewellyn CA (2021) Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnol Adv 49:107754

    Article  CAS  PubMed  Google Scholar 

  • Katiyar-Agarwal S, Jin H (2010) Role of small RNAs in host-microbe interactions. Annu Rev Phytopathol 48:225–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MJ, Shim CK, Kim YK, Ko BG, Park JH, Hwang SG et al (2018) Effect of biostimulator Chlorella fusca on improving growth and qualities of chinese chives and spinach in organic farm. Plant Pathol J 34:567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DR, Cho G, Jeon CW, Weller DM, Thomashow LS, Paulitz TC et al (2019) A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees. Nat Commun 10:4802

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Knight TM, Steets JA, Ashman TL (2006) A quantitative synthesis of pollen supplementation experiments highlights the contribution of resource reallocation to estimates of pollen limitation. Am J Bot 93:271–277

    Article  PubMed  Google Scholar 

  • Koza NA, Adedayo AA, Babalola OO, Kappo AP (2022) Microorganisms in plant growth and development: Roles in abiotic stress tolerance and secondary metabolites secretion. Microorganisms 10:1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kremen C, Williams NM, Thorp RW (2002) Crop pollination from native bees at risk from agricultural intensification. Proc Natl Acad Sci 99:16812–16816

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Krings M, Hass H, Kerp H, Taylor TN, Agerer R, Dotzler N (2009) Endophytic cyanobacteria in a 400-million-yr-old land plant: A scenario for the origin of a symbiosis? Rev Palaeobot Palynol 153:62–69

    Article  Google Scholar 

  • Leach JE, Triplett LR, Argueso CT, Trivedi P (2017) Communication in the phytobiome. Cell 169:587–596

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Rojas CM, Ishiga Y, Pandey S, Mysore KS (2013) Arabidopsis heterotrimeric G-proteins play a critical role in host and nonhost resistance against Pseudomonas syringae pathogens. PLoS One 8:e82445

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Lee SM, Ryu CM (2021) Algae as new kids in the beneficial plant microbiome. Front Plant Sci 12:599742

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee YRJ, Assmann SM (1999) Arabidopsis thaliana ‘extra-large GTP-binding protein’(AtXLG1): A new class of G-protein. Plant Mol Biol 40:55–64

    Article  CAS  PubMed  Google Scholar 

  • Lelandais-Brière C, Naya L, Sallet E, Calenge F, Frugier F et al (2009) Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell 21:2780–2796

    Article  PubMed  PubMed Central  Google Scholar 

  • Lelandais-Briere C, Moreau J, Hartmann C, Crespi M (2016) Noncoding RNAs, Emerging Regulators in Root Endosymbioses. Mol Plant Microbe Interact 29:170–180

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Xu SS, Gao J, Pan S, Wang GX (2014) Chlorella induces stomatal closure via NADPH oxidase-dependent ROS production and its effects on instantaneous water use efficiency in Vicia faba. PLoS One 9:e93290

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Liang X, Ding P, Lian K, Wang J, Ma M, Li L et al (2016) Arabidopsis heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor. Elife 5:e13568

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang X, Ma M, Zhou Z, Wang J, Yang X, Rao S, ... & Zhou JM. (2018) Ligand-triggered de-repression of Arabidopsis heterotrimeric G proteins coupled to immune receptor kinases. Cell Res 28:529–543

  • Liu H, Crawford M, Carvalhais LC, Dang YP, Dennis PG, Schenk PM (2016) Strategic tillage on a Grey Vertosol after fifteen years of no-till management had no short-term impact on soil properties and agronomic productivity. Geoderma 267:146–155

    Article  CAS  ADS  Google Scholar 

  • Liu H, Macdonald CA, Cook J, Anderson IC, Singh BK (2019) An ecological loop: Host microbiomes across multitrophic interactions. Trends Ecol Evol 34:1118–1130

    Article  PubMed  Google Scholar 

  • Loo EPI, Tajima Y, Yamada K, Kido S, Hirase T, Ariga H et al (2022) Recognition of microbe-and damage-associated molecular patterns by leucine-rich repeat pattern recognition receptor kinases confers salt tolerance in plants. Mol Plant Microbe Interact 35:554–566

    Article  CAS  PubMed  Google Scholar 

  • Martin VN, Schaeffer RN, Fukami T (2022) Potential effects of nectar microbes on pollinator health. Philos. Trans R Soc Lond B Biol Sci 377:20210155

  • Maruta N, Trusov Y, Brenya E, Parekh U, Botella JR (2015) Membrane-localized extra-large G proteins and Gβγ of the heterotrimeric G proteins form functional complexes engaged in plant immunity in Arabidopsis. Plant Physiol 167:1004–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason MG, Botella JR (2000) Completing the heterotrimer: Isolation and characterization of an Arabidopsis thaliana G protein γ-subunit cDNA. PNAS 97:14784–14788

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Mason MG, Botella JR (2001) Isolation of a novel G-protein γ-subunit from Arabidopsis thaliana and its interaction with Gβ. Biochim Biophys Acta, Gene Struct Expression 1520:147–153

    Article  CAS  Google Scholar 

  • Mayack C, Rükün T, Ercan N, Canko E, Avşar B, Dyer A, Garcia J, Çakmak İ (2021) Sub-lethal pesticide exposure erases colour vision memory and affects flower constancy in foraging honey bees. Res Square. https://doi.org/10.21203/rs.3.rs-1127589/v1

  • McCall AC, Irwin RE (2006) Florivory: The intersection of pollination and herbivory. Ecol Lett 9:1351–1365

    Article  PubMed  Google Scholar 

  • Megueni C, Ngakou A, Makalao MM et al (2006) Responses of soybean (Glycine max L.) to soil solarization and rhizobial field inoculation at Dang Ngaoundere, Cameroon. Asian J Plant Sci 5:832–837

    Article  Google Scholar 

  • Mendes R, Kruijt M, De Bruijn I, Dekkers E, van der Voort M, Schneider JH et al (2011) Deciphering the rhizosphere microbiome for disease suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  ADS  Google Scholar 

  • Middleton H, Yergeau É, Monard C, Combier JP, El Amrani A (2021) Rhizospheric plant–microbe interactions: miRNAs as a key mediator. Trends Plant Sci 26:132–141

    Article  CAS  PubMed  Google Scholar 

  • Middleton H, Monard C, Daburon V, Clostres E, Tremblay J, Yergeau É et al (2022) Plants release miRNAs in the rhizosphere, targeting microbial genes.bioRxiv. https://doi.org/10.1101/2022.07.26.501597

  • Miller JC, Lawrence AS, Ceserani T, Beakes CL, Clay NK (2018) Heterotrimeric G-proteins in unfolded protein response mediate plant growth-defense tradeoffs upstream of steroid and immune signaling. bioRxiv 438135. https://doi.org/10.1101/438135

  • Morcillo RJ, Vílchez JI, Zhang S, Kaushal R, He D, Zi H, Zhang H (2021) Plant transcriptome reprograming and bacterial extracellular metabolites underlying tomato drought resistance triggered by a beneficial soil bacteria. Metabolites 11:369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motta EV, Raymann K, Moran NA (2018) Glyphosate perturbs the gut microbiota of honey bees. PNAS 115:10305–10310

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Mubashar M, Naveed M, Mustafa A, Ashraf S, Shehzad Baig K, Alamri S et al (2020) Experimental investigation of chlorella vulgaris and Enterobacter sp. MN17 for decolorization and removal of heavy metals from textile wastewater. Water 12:3034

  • Mujtaba G, Lee K (2016) Advanced treatment of wastewater using symbiotic co-culture of microalgae and bacteria. Appl Chem Eng 27:1–9

    Article  CAS  Google Scholar 

  • Munir N, Hanif M, Abideen Z, Sohail M, El-Keblawy A, Radicetti E et al (2022) Mechanisms and strategies of plant microbiome interactions to mitigate abiotic stresses. Agronomy 12:2069

    Article  CAS  Google Scholar 

  • Muñoz AA, Celedon-Neghme C, Cavieres LA et al (2005) Bottom-up effects of nutrient availability on flower production, pollinator visitation, and seed output in a high-Andean shrub. Oecologia 143:126–135

    Article  PubMed  ADS  Google Scholar 

  • Mutale-joan C, Redouane B, Najib E, Yassine K, Lyamlouli K, Laila S, Zeroual Y, El Arroussi H (2020) Screening of microalgae liquid extracts for their biostimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum lycopersicum L. Sci Rep 10:2820

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Myers JH, Cory JS (2016) Ecology and evolution of pathogens in natural populations of Lepidoptera. Evol Appl 9:231–247

    Article  PubMed  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  ADS  Google Scholar 

  • Naylor D, DeGraaf S, Purdom E, Coleman-Derr D (2017) Drought and host selection influence bacterial community dynamics in the Grass Root Microbiome. ISME J 11:2691–2704

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikbakht Dehkordi A, Shiran B, Babaiyan N, Martínez-Gómez P, Rubio M (2017) Detection of Prunus necrotic ringspot virus (PNRSV) in almond and effect on pollen germination. In: VII International Symposium on Almonds and Pistachios, pp 357–362

  • Noman A, Aqeel M, Qasim M, Haider I, Lou Y (2020) Plant-insect-microbe interaction: A love triangle between enemies in ecosystem. Sci Total Environ 699:134181

    Article  CAS  PubMed  ADS  Google Scholar 

  • Oancea F, Velea S, Fatu V (2013) Micro-algae based plant biostimulant and its effect on water stressed tomato plants. Rom J Plant Prot 6:104–117

    Google Scholar 

  • Pandey S (2020) Plant receptor-like kinase signaling through heterotrimeric G-proteins. J Exp Bot 71:1742–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parachnowitsch AL, Manson JS, Sletvold N (2019) Evolutionary ecology of nectar. Ann Bot 123:247–261

    Article  CAS  PubMed  Google Scholar 

  • Parker MS, Mock T, Armbrust EV (2008) Genomic insights into marine microalgae. Annu Rev Genet 42:619–645

    Article  CAS  PubMed  Google Scholar 

  • Patel JS, Sarma BK, Singh HB, Upadhyay RS, Kharwar RN, Ahmed M (2016) Pseudomonas fluorescens and Trichoderma asperellum enhance expression of Gα subunits of the pea heterotrimeric G-protein during Erysiphe pisi infection. Front Plant Sci 6:1206

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng H, de-Bashan LE, Bashan Y, Higgins BT (2020) Indole-3-acetic acid from Azosprillum brasilense promotes growth in green algae at the expense of energy storage products. Algal Res 47:101845

  • Perales-Vela HV, Peña-Castro JM, Cañizares-Villanueva RO (2006) Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64:1–10

    Article  CAS  PubMed  ADS  Google Scholar 

  • Perfus-Barbeoch L, Jones AM, Assmann SM (2004) Plant heterotrimeric G protein function: insights from Arabidopsis and rice mutants. Curr Opin Plant Biol 7(6):719–731

    Article  CAS  PubMed  Google Scholar 

  • Pingret JL, Journet EP, Barker DG (1988) Rhizobium Nod factor signaling: Evidence for a G protein–mediated transduction mechanism. Plant Cell 10:659–671

    Google Scholar 

  • Poveda J (2021) Cyanobacteria in plant health: Biological strategy against abiotic and biotic stresses. Crop Prot 141:105450

    Article  CAS  Google Scholar 

  • Prasanna R, Babu S, Rana A, Kabi SR, Chaudhary V, Gupta V et al (2013) Evaluating the establishment and agronomic proficiency of cyanobacterial consortia as organic options in wheat–rice cropping sequence. Exp Agric 49:416–434

    Article  Google Scholar 

  • Pruss GJ, Nester EW, Vance V (2008) Infiltration with Agrobacterium tumefaciens induces host defense and development-dependent responses in the infiltrated zone. Mol Plant Microbe Interact 21:1528–1538

    Article  CAS  PubMed  Google Scholar 

  • Pusey PL, Curry E (2004) Temperature and pomaceous flower age related to colonization by Erwinia amylovora and antagonists. Phytopathology 94:901–911

    Article  CAS  PubMed  Google Scholar 

  • Ray A, Nayak M, Ghosh A (2022) A review on co-culturing of microalgae: A greener strategy towards sustainable biofuels production. Sci Total Environ 802:149765

    Article  CAS  PubMed  ADS  Google Scholar 

  • Stateczny D, Oppenheimer J, Bommert P (2016) G protein signaling in plants: minus times minus equals plus. Curr Opin Plant Biol 34:127–135

    Article  CAS  PubMed  Google Scholar 

  • Qiao L, Zheng L, Sheng C et al (2020) Rice siR109944 suppresses plant immunity to sheath blight and impacts multiple agronomic traits by affecting auxin homeostasis. Plant J 102:948–964

    Article  CAS  PubMed  Google Scholar 

  • Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52:1569–1582

    Article  CAS  PubMed  Google Scholar 

  • Queiroz RB, Donkersley P, Silva FN, Al-Mahmmoli IH, Al-Sadi AM, Carvalho CM, Elliot SL (2016) Invasive mutualisms between a plant pathogen and insect vectors in the Middle East and Brazil. R Soc Open Sci 3:160557

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Pandey S, Monshausen GB, Ding L, Assmann SM (2008) Regulation of root-wave response by extra large and conventional G proteins in Arabidopsis thaliana. Plant J 55:311–322

    Article  CAS  PubMed  Google Scholar 

  • Rachidi F, Benhima R, Sbabou L, El Arroussi H (2020) Microalgae polysaccharides bio-stimulating effect on tomato plants: Growth and metabolic distribution. Biotechnol Rep 25:e00426

    Article  Google Scholar 

  • Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS (2016) Algae-bacteria interactions: Evolution, ecology and emerging applications. Biotechnol Adv 34:14–29

    Article  CAS  PubMed  Google Scholar 

  • Rana A, Joshi M, Prasanna R, Shivay YS, Nain L (2012) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126

    Article  CAS  Google Scholar 

  • Rasmussen U, Johansson C, Renglin A, Petersson C, Bergman BA (1996) molecular characterization of the Gunnera-Nostoc symbiosis: Comparison with Rhizobium–and Agrobacterium–plant interactions. New Phytol 133:391–398

    Article  CAS  Google Scholar 

  • Ren B, Wang X, Duan J, Ma J (2019) Rhizobial tRNA-derived small RNAs are signal molecules regulating plant nodulation. Science 365:919–922

    Article  CAS  PubMed  ADS  Google Scholar 

  • Righini H, Francioso O, Martel Quintana A, Roberti R (2022) Cyanobacteria: A natural source for controlling agricultural plant diseases caused by fungi and oomycetes and improving plant growth. Horticulturae 8:58

    Article  Google Scholar 

  • Rodríguez A, Stella A, Storni M, Zulpa G, Zaccaro M (2006) Effects of cyanobacterial extracellular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Syst 2:7

    Article  PubMed  PubMed Central  Google Scholar 

  • Roossinck MJ, Garcia-Arenal AF (2015) Ecosystem simplification, biodiversity loss and plant virus emergence. Curr Opin Virol 491:56–62

    Article  Google Scholar 

  • Sabagh AE, Mbarki S, Hossain A, Iqbal MA, Islam MS, Raza A et al (2021) Potential role of plant growth regulators in administering crucial processes against abiotic stresses. Front Agron 3:648694

    Article  Google Scholar 

  • Sadr M, Aliabadi DE, Avşar B, Thrän D (2023) Assessing the seasonality impact on bioenergy production from energy crops in Germany. In: European Biomass Conference and Exhibition Proceedings, pp. 1–5. https://doi.org/10.5071/31stEUBCE2023-1DV.4.16

  • Samuni-Blank M, Izhaki I, Laviad S, Bar-Massada A, Gerchman Y, Halpern M (2014) The role of abiotic environmental conditions and herbivory in shaping bacterial community composition in floral nectar. PLoS One 9:e99107

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Santini G, Biondi N, Rodolfi L, Tredici MR (2021) Plant biostimulants from cyanobacteria: An emerging strategy to improve yields and sustainability in agriculture. Plants 10:643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaeffer RN, Vannette RL, Brittain C, Williams NM, Fukami T (2017) Non-target effects of fungicides on nectar-inhabiting fungi of almond flowers. Environ Microbiol Rep 9:79–84

    Article  PubMed  Google Scholar 

  • Shade A, McManus PS, Handelsman J (2013) Unexpected diversity during community succession in the apple flower microbiome. ASM 4:e00602-e612

    Google Scholar 

  • Shahid S, Kim G, Johnson NR, Wafula E, Wang F, Coruh C et al (2018) MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature 553:82–85

    Article  CAS  PubMed  ADS  Google Scholar 

  • Sharaby Y, Rodriguez-Martinez S, Lalzar M, Halpern M, Izhaki I (2020) Geographic partitioning or environmental selection: What governs the global distribution of bacterial communities inhabiting floral nectar? Sci Total Environ 749:142305

    Article  CAS  PubMed  ADS  Google Scholar 

  • Siddikee MA, Chauhan P, Anandham R, Han GH, Sa T (2010) Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20:1577–1584

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Najar G, Singh U (2012) Phosphorus management in field pea (Pisum sativum)-rice (Oryza sativa) cropping system under temperate conditions. Indian J Agric Sci 82:494

    Article  CAS  Google Scholar 

  • Singh SA (2014) review on possible elicitor molecules of cyanobacteria: Their role in improving plant growth and providing tolerance against biotic or abiotic stress. J Appl Microbiol 117:1221–1244

    Article  CAS  PubMed  Google Scholar 

  • Soper Gorden NL, Adler LS (2013) Abiotic conditions affect floral antagonists and mutualists of Impatiens capensis (Balsaminaceae). Am J Bot 100:679–689

    Article  PubMed  Google Scholar 

  • Strauss SY, Rudgers JA, Lau JA et al (2002) Direct and ecological costs of resistance to herbivory. Trends Ecol Evol 17:278–285

    Article  Google Scholar 

  • Subramanian S, Fu Y, Sunkar R, Barbazuk WB, Zhu JK, Yu O (2008) Novel and nodulation-regulated microRNAs in soybean roots. BMC Genom 9:160

    Article  Google Scholar 

  • Sujkowska-Rybkowska M, Rusaczonek A, Kasowska D, Gediga K, Banasiewicz J, Stępkowski T et al (2022) Potential of rhizobia nodulating anthyllis vulneraria L. from ultramafic soil as plant growth promoting bacteria alleviating nickel stress in arabidopsis thaliana L. Int J Mol Sci 23:11538

  • Sun Z, Liu Z, Zhou W, Jin H, Liu H, Zhou A, Zhang A, Wang MQ (2016) Temporal interactions of plant-insect-predator after infection of bacterial pathogen on rice plants. Sci Rep 6:26043

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surówka E, Rapacz M, Janowiak F (2020) Climate change influences the interactive effects of simultaneous impact of abiotic and biotic stresses on plants. In: Plant ecophysiology and adaptation under climate change: Mechanisms and perspectives I: General consequences and plant responses. Springer, pp 1–50

  • Taddese B, Upton GJ, Bailey GR, Jordan SR, Abdulla NY, Reeves PJ, Reynolds CA (2014) Do plants contain G protein-coupled receptors? Plant Physiol 164:287–307

    Article  CAS  PubMed  Google Scholar 

  • Thijs S, Langill T, Vangronsveld J (2017) The bacterial and fungal microbiota of hyperaccumulator plants: Small organisms, large influence. In: Advances in botanical research. Academic Press 83:43–86. Elsevier

  • Timm CM, Carter KR, Carrell AA, Jun SR, Jawdy SS, Vélez JM et al (2018) Abiotic stresses shift belowground populus-associated bacteria toward a core stress microbiome. Msystems 3:e00070-e117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  PubMed  ADS  Google Scholar 

  • Tiwari S, Lata C (2018) Heavy metal stress, signaling, and tolerance due to plant-associated microbes: An overview. Front Plant Sci 9:452

    Article  PubMed  PubMed Central  Google Scholar 

  • Toribio AJ, Suárez-Estrella F, Jurado MM, López-González JA, Martínez-Gallardo MR, López MJ (2022) Design and validation of cyanobacteria-rhizobacteria consortia for tomato seedlings growth promotion. Sci Rep 12:13150

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Tong CY, Honda K, Derek CJC (2023) A review on microalgal-bacterial Co-culture: The multifaceted role of beneficial bacteria towards enhancement of microalgal metabolite production. Environ Res 115872. Elsevier

  • Treves H, Raanan H, Kedem I, Murik O, Keren N, Zer H et al (2016) The mechanisms whereby the green alga Chlorella ohadii, isolated from desert soil crust, exhibits unparalleled photodamage resistance. New Phytol 210:1229–1243

    Article  CAS  PubMed  Google Scholar 

  • Tripathi P, Rabara RC, Reese RN, Miller MA, Rohila JS, Subramanian S et al (2016) A toolbox of genes, proteins, metabolites and promoters for improving drought tolerance in soybean includes the metabolite coumestrol and stomatal development genes. BMC Genom 17:102

    Article  Google Scholar 

  • Trusov Y, Rookes JE, Tilbrook K, Chakravorty D, Mason MG, Anderson D, ... & Botella JR (2007) Heterotrimeric G protein γ subunits provide functional selectivity in Gβγ dimer signaling in Arabidopsis. The Plant Cell 19:1235–1250

  • Trusov Y, Botella JR (2016) Plant G-proteins come of age: Breaking the bond with animal models. Front Chem 4:24

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Tsavkelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Hormones and hormone-like substances of microorganisms: A review. Appl Biochem Microbiol 42:229–235

    Article  CAS  Google Scholar 

  • Tsikou D, Yan Z, Holt DB, Abel NB, Reid DE, Madsen LH et al (2018) Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA. Science 362:233–236

    Article  CAS  PubMed  ADS  Google Scholar 

  • Tsolakidou MD, Stringlis IA, Fanega-Sleziak N, Papageorgiou S, Tsalakou A, Pantelides IS (2019) Rhizosphere-enriched microbes as a pool to design synthetic communities for reproducible beneficial outputs. FEMS Microbiol Ecol 95:fiz138

  • Ullah H, Chen JG, Wang S, Jones AM (2002) Role of a heterotrimeric G protein in regulation of Arabidopsis seed germination. Plant Physiol 129:897–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unnithan VV, Unc A, Smith GB (2014) Mini-review: A priori considerations for bacteria–algae interactions in algal biofuel systems receiving municipal wastewaters. Algal Res 4:35–40

    Article  Google Scholar 

  • Urano D, Chen JG, Botella JR, Jones AM (2013) Heterotrimeric G protein signalling in the plant kingdom. Open Biol 3(3):120186

  • Urano D, Colaneri A, Jones AM (2014) Ga modulates salt-induced cellular senescence and cell division in rice and maize. J Exp Bot 65:6553–6561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urano D, Jones AM (2014) Heterotrimeric G protein–coupled signaling in plants. Annu Rev Plant Biol 65:365–384

    Article  CAS  PubMed  Google Scholar 

  • van der Voort M, Kempenaar M, van Driel M, Raaijmakers JM, Mendes R (2016) Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression. Ecol Lett 19:375–382

    Article  PubMed  Google Scholar 

  • Vannette RL, Gauthier MPL, Fukami T (2013) Nectar bacteria, but not yeast, weaken a plant–pollinator mutualism. Proc Royal Soc b 280:20122601

    Article  Google Scholar 

  • Vannette RL, Fukami T (2017) Dispersal enhances beta diversity in nectar microbes. Ecol Lett 20:901–910

    Article  PubMed  Google Scholar 

  • Vishwakarma K, Kumar N, Shandilya C, Mohapatra S, Bhayana S, Varma A (2020) Revisiting plant–microbe interactions and microbial consortia application for enhancing sustainable agriculture: A review. Front Microbiol 11:560406

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogel C, Bodenhausen N, Gruissem W, Vorholt JA (2016) The Arabidopsis leaf transcriptome reveals distinct but also overlapping responses to colonization by phyllosphere commensals and pathogen infection with impact on plant health. New Phytol 212:192–207

    Article  CAS  PubMed  Google Scholar 

  • von Arx M, Moore A, Davidowitz G, Arnold AE (2019) Diversity and distribution of microbial communities in floral nectar of two night-blooming plants of the Sonoran Desert. PLoS One 14:e0225309

    Article  Google Scholar 

  • Vorholt JA (2012) Microbial life in the Phyllosphere. Nat Rev Microbiol 10:828–840

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Tao F, An F, Zou Y, Tian W, Chen X et al (2017) Wheat transcription factor TaWRKY70 is positively involved in high-temperature seedling plant resistance to Puccinia striiformis f. sp. tritici. Mol Plant Pathol 18:649–661

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Narendra S, Fedoroff N (2007) Heterotrimeric G protein signaling in the Arabidopsis unfolded protein response. PNAS 104:3817–3822

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Willmer P (2011) Pollination and Floral Ecology. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  • Xu J, Zhang Y, Zhang P, Trivedi P, Riera N, Wang Y et al (2018) The structure and function of the global citrus rhizosphere microbiome. Nat Commun 9:1–10

    Article  ADS  Google Scholar 

  • Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH (2017) Biostimulants in plant science: A global perspective. Front Plant Sci 7:2049

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Q, Matheickal JT, Yin P, Kaewsarn P (1999) Heavy metal uptake capacities of common marine macro algal biomass. Water Res 33:1534–1537

    Article  CAS  Google Scholar 

  • Yuan Z, Druzhinina IS, Labbé J, Redman R, Qin Y, Rodriguez R et al (2016) Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. Sci Rep 6:32467

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Zampino D, Duro A, Sciandrello S, Parafati L, Restuccia C (2021) Pollen viability and endophytic yeast species of Cistus creticus and C. monspeliensis. Plant Biosyst 155:384–393

    Article  Google Scholar 

  • Zhang H, Tao Z, Hong H et al (2016) Transposon-derived small RNA is responsible for modified function of WRKY45 locus. Nat Plants 2:16016

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Gao Z, Zheng X, Zhang Z (2012) The role of G-proteins in plant immunity. Plant Signal Behav 7:1284–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou JM, Zhang Y (2020) Plant immunity: Danger perception and signaling. Cell 181:978–989

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Zhou Y, Chen X (2017) New insight into inter-kingdom communication: Horizontal transfer of mobile small RNAs. Front Microbiol 8:768

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Li GJ, Ding L, Cui X, Berg H, Assmann SM, Xia Y (2009) Arabidopsis extra large G-protein 2 (XLG2) interacts with the Gβ subunit of heterotrimeric G protein and functions in disease resistance. Mol Plant 2:513–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Li S, Hu Z, Liu G (2018) Molecular characterization of eukaryotic algal communities in the tropical phyllosphere based on real-time sequencing of the 18S rDNA gene. BMC Plant Biol 18:1–14

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank colleagues and reviewers for their constructive suggestions to improve the manuscript.

Funding

This review paper received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and visualization, BA; resources BA, EE and ZT; investigation, BA, EE and ZT; writing-original draft preparation, BA; writing-review and editing, BA, EE and ZT. All authors have read and agreed to the latest version of the manuscript.

Corresponding author

Correspondence to Bihter Avşar.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avşar, B., Erendemir, E. & Taşkin, Z. An overview of the roles of critical insiders and outsiders for reciprocal plant–microbe interaction: Heterotrimeric G-proteins, small RNAs, pollinators, microalgae. Symbiosis 92, 27–50 (2024). https://doi.org/10.1007/s13199-023-00957-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-023-00957-1

Keywords

Navigation