Skip to main content
Log in

Voltammetric determination of polyphenolic content as rosmarinic acid equivalent in tea samples using pencil graphite electrodes

  • Original Article
  • Published:
Journal of Food Science and Technology Aims and scope Submit manuscript

Abstract

The quasi-reversible, diffusion controlled behavior of rosmarinic acid (RA) on a disposable pencil graphite electrode (PGE) was established by cyclic voltammetry. Using the anodic oxidation peak presented by RA on the PGE a differential pulse voltammetric (DPV) method was developed for the quantitative determination of RA. The linear range was 10−8 – 10−5 M RA and the detection and quantification limits were 7.93 × 10−9 M and 2.64 × 10−8 M RA, respectively. The applicability of the developed method was tested by recovery studies and by the assessment of the total polyphenolic contents (TPCDPV) of green, white and black Turkish teas, which were found to be 40.74, 30.04 and 23.97 mg rosmarinic acid equivalent/g dry tea, respectively. These results were in good agreement with those obtained by the Folin-Ciocalteu method. The developed method is a sensitive and cheap tool for the rapid and precise evaluation of TPCDPV of tea samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alkam T, Nitta A, Mizoguchi H, Itoh A, Nabeshima T (2007) A natural scavenger of peroxynitrites, rosmarinic acid, protects against impairment of memory induced by Aβ25–35. Behav Brain Res 180:139–145. doi:10.1016/j.bbr.2007.03.001

    Article  CAS  Google Scholar 

  • Astani A, Reichling J, Schnitzler P (2012) Melissa officinalis extract inhibits attachment of Herpes simplex virus in vitro. Chemotherapy 58:70–77. doi:10.1159/000335590

    Article  CAS  Google Scholar 

  • Başkan S, Őztekin N, Erim FB (2007) Determination of carnosic acid and rosmarinic acid in sage by capillary electrophoresis. Food Chem 101:1748–1752. doi:10.1016/j.foodchem.2006.01.033

    Article  Google Scholar 

  • Brett CMA, Oliveira-Brett AM (1993) Electrochemistry. Principles, methods and applications. Oxford University Press, Oxford

    Google Scholar 

  • Brondani D, Zapp E, Cruz Vieira I, Dupont J, Weber Scheeren C (2011) Gold nanoparticles in an ionic liquid phase supported in a biopolymeric matrix applied in the development of a rosmarinic acid biosensor. Analyst 136:2495–2505. doi:10.1039/C1AN15047B

    Article  CAS  Google Scholar 

  • Bulgakov VP, Inyushkina YV, Fedoreyev SA (2012) Rosmarinic acid and its derivatives: biotechnology and applications. Crit Rev Biotechnol 32:203–217. doi:10.3109/07388551.2011.596804

    Article  CAS  Google Scholar 

  • Buratti S, Scampicchio M, Giovanelli G, Mannino S (2008) A low-cost and low tech electrochemical flow system for the evaluation of total phenolic content and antioxidant power of tea infusions. Talanta 75:312–316. doi:10.1016/j.talanta.2007.11.014

    Article  CAS  Google Scholar 

  • David GI, Badea IA, Radu GL (2013) Disposable carbon electrodes as an alternative for the direct voltammetric determination of alkyl phenols from water samples. Turk J Chem 37:91–100. doi:10.3906/kim-1203-49

    CAS  Google Scholar 

  • David GI, Bizgan AMC, Popa DE, Buleandra M, Moldovan Z, Badea IA, Tekiner TA, Basaga H, Ciucu AA (2015a) Rapid determination of total polyphenolic content in tea samples based on caffeic acid voltammetric behavior on a disposable graphite electrode. Food Chem 173:1059–1065. doi:10.1016/j.foodchem.2014.10.139

    Article  CAS  Google Scholar 

  • David GI, Florea MA, Cracea OG, Popa DE, Buleandra M, Iorgulescu EE, David V, Badea IA, Ciucu AA (2015b) Voltammetric determination of B1 and B6 vitamins on a pencil graphite electrode. Chem Pap 69(7):901–910. doi:10.1515/chempap-2015-0096

    Article  CAS  Google Scholar 

  • de Souza GE, Enache TA, Oliveira-Brett AM (2013) Redox behaviour of verbascoside and rosmarinic acid. Comb Chem High T Scr 16:92–97. doi:10.2174/1386207311316020003

    Google Scholar 

  • Dhaouadi K, Belkhir M, Raboudi F, Mecha E, Ghommeme I, Bronze MDR, Ammar H, Fattouch S (2016) Pomegranate and mint syrup addition to green tea beverage stabilized its polyphenolic content and biofunctional potentials during refrigerated storage. J Food Sci Technol 53(2):1164--1177. doi:10.1007/s13197-015-2109-4

  • Diaconu M, Litescu SC, Radu GL (2011) Bienzymatic sensor based on the use of redox enzymes and chitosan-MWCNT nanocomposite. Evaluation of total phenolic content in plant extracts. Mikrochim Acta 172:177–184. doi:10.1007/s00604-010-0486-y

    Article  CAS  Google Scholar 

  • Dias PM, Changarath J, Damodaran A, Joshi MK (2014) Compositional variation among black tea across geographies and their potential influence on endothelial nitric oxide and antioxidant activity. J Agric Food Chem 62:6655–6668. doi:10.1021/jf501611w

    Article  CAS  Google Scholar 

  • Eremia SAV, Vasilescu I, Radoi A, Litescu SC, Radu GL (2013) Disposable biosensor based on platinum nanoparticles-reduced graphene oxide-laccase biocomposite for the determination of total polyphenolic content. Talanta 110:164–170. doi:10.1016/j.talanta.2013.02.029

    Article  CAS  Google Scholar 

  • Furtado MA, de Almeida LC, Furtado RA, Cunha WR, Tavares DC (2008) Antimutagenicity of rosmarinic acid in Swiss mice evaluated by the micronucleus assay. Mutat Res 657:150–154. doi:10.1016/j.mrgentox.2008.09.003

    Article  CAS  Google Scholar 

  • González AG, Herrador MÁ (2007) A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles. Trends Anal Chem 26:227–238. doi:10.1016/j.trac.2007.01.009

    Article  Google Scholar 

  • Hong E, Kim GH (2010) Comparison of extraction conditions for phenolic, flavonoid content and determination of rosmarinic acid from Perilla frutescens var. acuta. Int J Food Sci Tech 45:1353–1359. doi:10.1111/j.1365-2621.2010.02250.x

    Article  CAS  Google Scholar 

  • JCGM 100 (2008) Evaluation of measurement data - Guide to the expression of uncertainty in measurement (GUM), p. 37

  • Lantano C, Rinaldi M, Cavazza A, Barbanti D, Corradini C (2015) Effects of alternative steeping methods on composition, antioxidant property and colour of green, black and oolong tea infusions. J Food Sci Technol 52:8276–828. doi:10.1007/s13197-015-1971-4

    Article  CAS  Google Scholar 

  • Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  • Lee LS, Kim SH, Kim YB, Kim YC (2014) Quantitative analysis of major constituents in green tea with different plucking periods and their antioxidant activity. Molecules 19:9173–9186. doi:10.3390/molecules19079173

    Article  Google Scholar 

  • Litescu SC, Eremia SAV, Bertoli A, Pistelli L, Radu GL (2010) Laccase-nafion based biosensor for the determination of polyphenolic secondary metabolites. Anal Lett 43:1089–1099. doi:10.1080/00032710903518518

    Article  CAS  Google Scholar 

  • Loganayaki N, Siddhuraju P, Manian S (2013) Antioxidant activity and free radical scavenging capacity of phenolic extracts from Helicteres isora L. and Ceiba pentandra L. J Food Sci Technol 50:687–695. doi:10.1007/s13197-011-0389-x

    Article  CAS  Google Scholar 

  • Novak I, Šeruga M, Komorsky-Lovric S (2009) Electrochemical characterization of epigallocatechin gallate using square-wave voltammetry. Electroanal 21:1019–1025. doi:10.1002/elan.200804509

    Article  CAS  Google Scholar 

  • Osakabe N, Yasuda A, Natsume M, Yoshikawa T (2004) Rosmarinic acid inhibits epidermal inflammatory responses: anti-carcinogenetic effects of Perilla frutescens extract in the murine two-stage skin mode. Carcinogenesis 25:549–557. doi:10.1093/carcin/bgh034

    Article  CAS  Google Scholar 

  • Öztürk M, Duru ME, İnce B, Harmandar M, Topçu G (2010) A new rapid spectrophotometric method to determine the rosmarinic acid level in plant extracts. Food Chem 123:1352–1356. doi:10.1016/j.foodchem.2010.06.021

    Article  Google Scholar 

  • Pérez-Tortosa V, López-Orenes A, Martínez-Pérez A, Ferrer MA, Calderón AA (2012) Antioxidant activity and rosmarinic acid changes in salicylic acid-treated Thymus membranaceus shoots. Food Chem 130:362–369. doi:10.1016/j.foodchem.2011.07.051

    Article  Google Scholar 

  • Petersens M (2013) Rosmarinic acid: new aspects. Phytochem Rev 12:207–227. doi:10.1007/s11101-013-9282-8

    Article  Google Scholar 

  • Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302. doi:10.1021/jf0502698

    Article  CAS  Google Scholar 

  • Razboršek MI (2011) Stability studies on trans-rosmarinic acid and GC-MS analysis of its degradation product. J Pharm Biomed Anal 55:1010–1016. doi:10.1016/j.jpba.2011.04.003

    Article  Google Scholar 

  • Saltas D, Pappas CS, Daferera D, Tarantilis PA, Polissiou MG (2013) Direct determination of rosmarinic acid in Lamiaceae herbs using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and chemometrics. J Agric Food Chem 61:3235–3241. doi:10.1021/jf305520m

    Article  CAS  Google Scholar 

  • Shanker N, Debnath S (2015) Impact of dehydration of purslane on retention of bioactive molecules and antioxidant activity. J Food Sci Technol 52:6631–663. doi:10.1007/s13197-015-1741-3

    Article  CAS  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth Enzymol 299:152–178. doi:10.1016/S0076-6879(99)99017-1

    Article  CAS  Google Scholar 

  • Sonmezdag AS, Kelebek H, Selli S (2016) Characterization of aroma-active and phenolic profilesof wild thyme (Thymus serpyllum) by GC-MS-Olfactometry and LC-ESI-MS/MS. J Food Sci Technol. doi:10.1007/s13197-015-2144-1

    Google Scholar 

  • Swarup V, Ghosh J, Ghosh S, Saxena A, Basu A (2007) Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of Japanese encephalitis. Antimicrob Agents Chemother 51:3367–3370. doi:10.1128/AAC.00041-07

    Article  CAS  Google Scholar 

  • Wang J, Zhang K, Zhou J, Liu J, Ye B (2013) Electrochemical properties of rosmarinic acid and its analytical application. Sens Lett 11:305–310. doi:10.1166/sl.2013.2718

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Romania-Turkey Joint Project financed by the Executive Unit for Financing Higher Education, Research and Development and Innovation (UEFISCDI) (604/2013) and The Scientific and Technological Research Council of Turkey (Tubitak) (112 O 420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Buleandră.

Additional information

Highlights

• Voltammetric investigation of rosmarinic acid on a cheap, disposable pencil graphite electrode (PGE)

• Rapid, simple and sensitive voltammetric method on PGE for rosmarinic acid quantification

• Cheap tool for the rapid assay of the total polyphenolic content of teas (mg RAE/g tea)

• Precision of the developed voltammetric method comparable to that of Folin-Ciocalteu method

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

David, I.G., Buleandră, M., Popa, D.E. et al. Voltammetric determination of polyphenolic content as rosmarinic acid equivalent in tea samples using pencil graphite electrodes. J Food Sci Technol 53, 2589–2596 (2016). https://doi.org/10.1007/s13197-016-2223-y

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13197-016-2223-y

Keywords

Navigation