Skip to main content

Advertisement

Log in

Genetic Diversity and Functional Traits of Pterocarpus officinalis Jacq. Associated with Symbiotic Microbial Communities in Caribbean Swamp Forests in Relation to Insular Distribution, Salinity and Flooding

  • Review Article
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Pterocarpus officinalis is a significant component of the Caribbean wetland plant community. Currently, stands are growing near their physiological extreme, thus it is very important to understand the biology of the species to develop effective conservation strategies and plans. The intra-specific diversity of P. officinalis has been analyzed at different spatial scales, from the continental to the insular Caribbean areas, by using AFLP, chloroplast and nuclear microsatellites, cpDNA, and nrITS markers. The genetic diversity of P. officinalis was higher from continental than from island populations. A similar pattern of genetic diversity resulted from Bradyrhizobial strains isolated from P. officinalis nodules. Bradyrhizobial strains associated with P. officinalis have positive effects on nodulation, N-acquisition, and plant growth. Pterocarpus officinalis is not a halophyte plant. However, it grew better in flooding due to the lenticels, adventitious roots, and aerenchyma that promote root colonization by arbuscular mycorrhizal fungi (AMF) and N-fixing root-nodular bacteria. Furthermore, arbuscular mycorrhizal colonization and nodulation improve flooding tolerance in P. officinalis seedlings. The ecological, demographic, genetic, and physiological data that have been collected through the Caribbean populations of P. officinalis in combination with data from its associated microorganisms are providing the framework to develop better restoration efforts for the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acevedo MA, Aide TM (2008) Bird community dynamics and habitat associations in Karst, Mangrove and Pterocarpus forest fragments in an urban zone in Puerto Rico. Caribbean Journal of Science 44:402–416

    Google Scholar 

  • Aide TM, Rivera E (1998) Geographic patterns of genetic diversity in Poulsenia armata (Moraceae): implications for the theory of Pleistocene refugia and the importance of riparian forest. Journal of Biogeography 25:695–705

    Article  Google Scholar 

  • Álvarez López M (1990) Ecology of Pterocarpus officinalis forested wetlands in Puerto Rico. In: Lugo AE, Brinson M, Brown S (eds) Ecosystems of the world 15, forested wetlands. Elsevier, Amsterdam, pp 251–265

    Google Scholar 

  • Anderson RC, Liberta AE, Dickman LA (1984) Interaction of vascular plants and vesicular-arbuscular mycorrhizal fungi across a soil-moisture gradient. Oecologia 64:111–117

    Article  Google Scholar 

  • Bâ AM, Samba R, Sylla S, Le Roux C, Neyra M, Rousteau A, Imbert D, Toribio A (2004) Caractérisation de la diversité des microorganismes symbiotiques de Pterocarpus officinalis dans des forêts marécageuses de Guadeloupe et Martinique. Revue Ecologie (Terre et Vie) 59:163–170

    Google Scholar 

  • Bacon P (1990) Ecology and management swamp forest in the Guianas and Caribbean region. In: Lugo AE, Brinson M, Brown S (eds) Ecosystems of the world 15. Forested wetlands. Elsevier, Amsterdam, pp 213–250

    Google Scholar 

  • Barrett SCH (1996) The reproductive biology and genetics of island plants. Philosophical Transactions of the Royal Society London B 351:725–733

    Article  Google Scholar 

  • Barrett SCH, Shore JS (1989) Isozyme variation in colonizing plants. In: Soltis D, Soltis P (eds) Isozymes in plant biology. Dioscorides Press, Portland, pp 106–126

    Chapter  Google Scholar 

  • Behling H, Hooghiemstra H (2001) Neotropical savanna environments in space and time: late Quaternary interhemispheric comparisons. In: Markgraf V (ed) Interhemispheric climate linkages. Academic Press, San Diego

    Google Scholar 

  • Bompy F, Imbert D, Dulorme M (2015) Impact patterns of soil salinity variations on the survival rate, growth performances, and physiology of Pterocarpus officinalis seedlings. Trees 29:119–128

    Article  CAS  Google Scholar 

  • Colmer TD, Flowers TJ (2008) Flooding tolerance in halophytes. New Phytologist 179:964–974

    Article  CAS  PubMed  Google Scholar 

  • Colón-Rivera RJ, Feagin RA, West JB, Lopez NB, Benítez-Joubert RJ (2014) Hydrological modification, saltwater intrusion, and tree water use of a Pterocarpus officinalis swamp in Puerto Rico. Estuarine, Coastal and Shelf Science 147:156–167

    Article  Google Scholar 

  • Corby HDL (1988) Types of rhizobial nodules and their distribution among the Leguminosae. Kirkia 13:53–123

    Google Scholar 

  • Declerck S, Plenchette C, Risede JM, Strullu DG, Delvaux B (1999) Estimation of the population density of arbuscular mycorrhizal fungi in soils used for intensive banana cultivation in Martinique. Fruits 54:3–9

    Google Scholar 

  • Dick CW, Bermingham E, Lemes MR, Gribel R (2007) Extreme long distance dispersal of the lowland tropical rainforest tree Ceiba pentandra L. (Malvaceae) in Africa and the Neotropics. Molecular Ecology 16:3039–3049

    Article  PubMed  Google Scholar 

  • Dreyfus B, Dommergues Y (1981) Nitrogen-fixing nodules induced by Rhizobium on the stem of the tropical legume Sesbania rostrata. FEMS Microbiology Letter 10:313–317

    Article  CAS  Google Scholar 

  • Dulormne M, Musseau O, Muller F, Bâ AM (2010) Effects of NaCl on growth, water status, N2 fixation, and ion distribution in Pterocarpus officinalis seedlings. Plant and Soil 327:23–24

    Article  CAS  Google Scholar 

  • Erwin KL (2009) Wetlands and global climate change: the role of wetland restoration in a changing world. Wetland Ecology and Management 17:71–84

    Article  Google Scholar 

  • Eusse AM, Aide TM (1999) Patterns of litter production across a salinity gradient in Pterocarpus officinalis tropical wetland. Plant Ecology 145:307–315

    Article  Google Scholar 

  • Felsenstein J (1993) PHYLIP: phylogenetic inference package, version 6.1. University of Washington, Seattle

    Google Scholar 

  • Fisher CR, Janos DP, Perry DA, Linderman RG (1994) Mycorrhiza inoculum potentials in tropical secondary succession. Biotropica 26:369–377

    Article  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytologist 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. The Quarterly Review of Biology 61:313–337

    Article  Google Scholar 

  • Fougnies L, Renciot S, Muller F, Plenchette C, Prin Y, de Faria SM, Bouvet JM, Sylla S, Dreyfus B, Bâ AM (2007) Arbuscular mycorrhizal colonization and nodulation improve flooding tolerance in Pterocarpus officinalis Jacq. seedlings. Mycorrhiza 17:159–166

    Article  CAS  PubMed  Google Scholar 

  • Goormachtig S, Capoen W, Holsters M (2004) Rhizobium infection: lessons from the versatile nodulation behaviour of water-tolerant legumes. Trends Plant Science 11:518–522

    Article  Google Scholar 

  • Graham A (1995) Diversification of Gulf/Caribbean mangrove communities through Cenozoic time. Biotropica 27:20–27

    Article  Google Scholar 

  • Herman JR, Bhartia PK, Torres O, Hsu C, Seftor C, Celarier E (1997) Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data. Journal of Geophysical Research 102:16911–16922

    Article  CAS  Google Scholar 

  • Imbert D, Bonheme I, Saur E, Bouchon C (2000) Floristics and structure of Pterocarpus officinalis swamp forest in Guadeloupe, Lesser Antilles. Journal of Tropical Ecology 16:55–68

    Article  Google Scholar 

  • Isard SA, Gage SH (2001) Flow of life in the atmosphere: an airscape approach to understanding invasive organisms. Michigan State University Press, East Lansing

  • James EK, Loureiro FM, Pott VJ, Martins CM, Franco AA, Sprent JI (2001) Flooding-tolerant legume symbiosis from the Brazilian Pantanal. New Phytologist 150:723–738

    Article  Google Scholar 

  • Kier G, Holger K, Lee TM, Jetz W, Ibisch PL, Nowicki C, Mutke J, Barthlott W (2009) A global assessment of endemism and species richness across island and mainland regions. Proceedings of the National Academy of Sciences 106:9322–9327

    Article  CAS  Google Scholar 

  • Koponen P, Nygren P, Domenach AM, Le Roux C, Saur E, Roggy JC (2003) Nodulation and dinitrogen fixation of legume trees in tropical freshwater swamp forest in French Guiana. Journal of Tropical Ecology 19:655–666

    Article  Google Scholar 

  • Krauss SL, Koch JM (2004) Methodological insights: rapid genetic delineation of provenance for plant community restoration. Journal of Applied Ecology 41:1162–1173

    Article  Google Scholar 

  • Laikre L, Allendorf FW, Aroner LC, Baker CS, Gregovich DP, Hansen MM, Jackson JA, Kendall K, McKelvey KS, Neel MC, Olivieri I, Ryman N, Schwartz MK, Short Bull R, Stetz JB, Tallmon DA, Taylor BL, Vojta CD, Waller DM, Waples RS (2009) Neglect of genetic diversity in implementation of the convention on biological diversity. Conservation Biology 24:86–88

    Article  PubMed  Google Scholar 

  • Le Roux C, Muller F, Bouvet JM, Dreyfus B, Béna G, Galiana A, Bâ AM (2014) Genetic diversity patterns and functional traits of Bradyrhizobium strains associated with Pterocarpus officinalis Jacq. in Caribbean islands and Amazonian forest (French Guiana). Microbial Ecology. doi:10.1007/s00248-014-0392-7

    Google Scholar 

  • Liao CT, Lin CH (2001) Physiological adaptation of crop plants to flooding stress. Proceedings of the National Science Council 25:148–157

    CAS  Google Scholar 

  • Loureiro MF, James EK, Sprent J, Franco AA (1995) Stem and root nodules on the tropical wetland legume Aeschynomene fluminensis. New Phytologist 130:531–544

    Article  Google Scholar 

  • Martin SB, Shaffer GP (2005) Sagittaria biomass partitioning relative to salinity, hydrologic regime, and substrate type: implications for plant distribution patterns in coastal Louisiana, United States. Journal of Coastal Research 21:167–174

    Article  Google Scholar 

  • Medina E, Cuevas E, Lugo AE (2007) Nutrient and salt relations of Pterocarpus officinalis L. in coastal wetlands of the Caribbean: assessment through leaf and soil analyses. Trees 21:312–327

    Article  Google Scholar 

  • Migeot J, Imbert D (2011) Structural and floristic patterns in tropical swamp forest: a case study from the Pterocarpus officinalis (Jacq.) forest in Guadeloupe. French West Indies Aquatic Botany 94:1–8

    Article  Google Scholar 

  • Migeot J, Imbert D (2012) Phenology and production of litter in a Pterocarpus officinalis (Jacq.) swamp forest of Guadeloupe (Lesser Antilles). Aquatic Botany 101:18–27

    Article  Google Scholar 

  • Mitsch WJ, Gosselink JG (2007) Wetlands 4th Edition. John Wiley & Sons, Inc, New York

  • Muller F (2006) Diversité génétique, adaptation de Pterocarpus officinallis (Jacq.) et de ses symbiotes dans des forêts marécageuses de la région Caraïbe. Ph.D thesis Antilles-Guyane University, France

  • Muller F, Vaillant A, Bâ AM, Bouvet JM (2006) Isolation and characterization of microsatellite markers in Pterocarpus officinalis Jacq. Molecular Ecology Notes 6:462–464

    Article  CAS  Google Scholar 

  • Muller F, Voccia M, Bâ AM, Bouvet JM (2009) Genetic diversity and gene flow in a Caribbean tree Pterocarpus officinalis Jacq. : a study based on chloroplast and nuclear microsatellites. Genetica 135:185–198

    Article  CAS  PubMed  Google Scholar 

  • Pérez R, Heartsill Scalley T (2008) Root nodulation in the wetland tree Pterocarpus officinalis along coastal and montane systems or northeast of Puerto Rico. Acta Científica 22:45–54

    Google Scholar 

  • Prospero JM, Blades E, Mathison G, Naidu R (2005) Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia 21:1–19

    Article  Google Scholar 

  • Ríos-López N (2007) The structuring of herpeto faunal assemblages in human-altered coastal ecosystems. Ph.D thesis, University of Puerto Rico–Río Piedras Campus, San Juan, Puerto Rico

  • Rivera-Ocasio E (2007) Comparative phylogeography of Caribbean wetland tree species. IV. Comparison of nuclear and chloroplast DNA phylogeographic patterns of the Caribbean wetland community: Do they tell the same story? Ph.D thesis, University of Puerto Rico- Rio Piedras, Puerto Rico

  • Rivera-Ocasio E, Aide TM, McMillan WO (2002) Patterns of genetic diversity and biogeographical history of the tropical wetland tree, Pterocarpus officinalis (Jacq.) in the Caribbean basin. Molecular Ecology 11:675–683

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Ocasio E, Aide M, McMillan WO (2006) The influence of spatial scale on the genetic structure of a widespread tropical wetland tree, Pterocarpus officinalis (Fabaceae). Conservation Genetic 7:251–266

    Article  Google Scholar 

  • Rivera-Ocasio E, Aide M, Rios-López N (2007) The effects of salinity on the dynamics of a Pterocarpus officinalis forest stand in Puerto Rico. Journal of Tropical Ecology 23:559–568

    Article  Google Scholar 

  • Ruiz-Lozano JM, Collados C, Barea JM, Azcon R (2001) Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants. New Phytologist 151:493–502

    Article  CAS  Google Scholar 

  • Saint-Etienne L, Paul S, Imbert D, Dulormne M, Muller F, Torobio A, Plenchette C, Bâ AM (2006) Arbuscular mycorrhizal soil infectivity in a stand of the wetland tree Pterocarpus officinalis along a salinity gradient. Forest Ecology and Management 232:86–89

    Article  Google Scholar 

  • Sanchez-Diaz M, Pardo M, Antolin M, Pena J, Aguirreolea J (1990) Effect of water stress on photosynthetic activity in the MedicagoRhizobiumGlomus symbiosis. Plant Science 71:215–221

    Article  Google Scholar 

  • Saur E, Bonhême I, Nygren P, Imbert D (1998) Nodulation of Pterocarpus officinalis in the swamp forest of Guadeloupe (lesser Antilles). Journal of Tropical Ecology 14:761–770

    Article  Google Scholar 

  • Stevens KJ, Peterson RL (1996) The effect of a water gradient on the vesicular-arbuscular mycorrhizal status of Lythrum salicaria L. (purple loosestrife). Mycorrhiza 6:99–104

    Article  Google Scholar 

  • Walter CA, Bien A (1989) Aerial root nodules in the tropical legume, Pentaclethra macroloba. Oecologia 80:27–31

    Article  CAS  PubMed  Google Scholar 

  • Weaver PL (1997) Pterocarpus officinalis Jacq. US Department of Agriculture, Forest Service, Southern Research Station, Río Piedras

    Google Scholar 

Download references

Acknowledgments

We thank Neftalí Rios-López for his valuable discussions and comments to this manuscript. The comments of Tamara Heartsill-Scalley, Steven A. Sloan and three anonymous reviewers helped improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amadou M. Bâ.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bâ, A.M., Rivera-Ocasio, E. Genetic Diversity and Functional Traits of Pterocarpus officinalis Jacq. Associated with Symbiotic Microbial Communities in Caribbean Swamp Forests in Relation to Insular Distribution, Salinity and Flooding. Wetlands 35, 433–442 (2015). https://doi.org/10.1007/s13157-015-0651-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-015-0651-5

Keywords

Navigation