Skip to main content
Log in

The influence of spatial scale on the genetic structure of a widespread tropical wetland tree, Pterocarpus officinalis (Fabaceae)

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Identifying factors that cause genetic differentiation in plant populations and the spatial scale at which genetic structuring can be detected will help to understand plant population dynamics and identify conservation units. In this study, we determined the genetic structure and diversity of Pterocarpus officinalis, a widespread tropical wetland tree, at three spatial scales: (1) drainage basin “watershed” (<10 km), (2) within Puerto Rico (<100 km), and (3) Caribbean-wide (>1000 km) using AFLP. At all three spatial scales, most of the genetic variation occurred within populations, but as the spatial scale increased from the watershed to the Caribbean region, there was an increase in the among population variation (ΦST=0.19 to ΦST=0.53). At the watershed scale, there was no significant differentiation (P=0.77) among populations in the different watersheds, although there was some evidence that montane and coastal populations differed (P<0.01). At the island scale, there was significant differentiation (P<0.001) among four populations in Puerto Rico. At the regional scale (>1000 km), we found significant differentiation (P<0.001) between island and continental populations in the Caribbean region, which we attributed to factors associated with the colonization history of P. officinalis in the Neotropics. Given that genetic structure can occur from local to regional spatial scales, it is critical that conservation recommendations be based on genetic information collected at the appropriate spatial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aide TM, Rivera E. (1998). Geographic patterns of genetic diversity in Poulsenia armata (Moraceae): implications for the theory of Pleistocene refugia and the importance of riparian forest. J. Biog. 25:695–705

    Article  Google Scholar 

  • Akimoto M, Shimamoto Y, Morishima H. (1998). Population genetic structure of the wild rice Oryza glumaepatula distributed in the Amazon flood area influenced by its life-history traits. Mol. Ecol. 7:371–1382

    Article  Google Scholar 

  • Bacon PR. (1990). Ecology and management swamp forest in the Guianas and Caribbean region. In: Lugo AE, Brinson M, Brown S. (eds). Ecosystems of the World 15 Forested Wetlands. Elsevier, Amsterdam, pp. 213–250

    Google Scholar 

  • Bawa KS, Dayanandan S. (1998). Global climate change and tropical forest genetic resources. Clim.Change 39:473–485

    Article  Google Scholar 

  • Berg EE, Hamrick JL. (1995). Fine-scale genetic structure of a Turkey oak forest. Evolution 49:110–120

    Article  Google Scholar 

  • Blears MJ, De Grandis SA, Lee H, Trevors JT. (1998). Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. J. Ind. Microbiol. Biotechnol 21:99–114

    Article  CAS  Google Scholar 

  • Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetic studies. Mol. Ecol. 13:3261–3273

    Article  PubMed  CAS  Google Scholar 

  • Cardoso SRS, Eloy NB, Provan J, Cardoso MA, Ferreira PCG (2000) Genetic differentiation of Euterpe edulis Mart. populations estimated by AFLP analysis. Mol. Ecol. 9:1753–1760

    Article  PubMed  CAS  Google Scholar 

  • Caron HS, Dumas G, Marque G, Messier C, Bandou E, Petit RJ, Kremer A (2000) Spatial and temporal distribution of chloroplast DNA polymorphism in a tropical tree species. Mol. Ecol. 9:1089–1098

    Article  PubMed  CAS  Google Scholar 

  • Cintrón BB (1983) Coastal freshwater swamp forest: Puerto Rico=s most endangered ecosystem. In: Lugo AE. (eds) Los Bosques de Puerto Rico. U. S. Forest Service, Department of Natural Resources, San Juan, Puerto Rico, pp. 249–275

    Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18:117–143

    Article  Google Scholar 

  • Dick CW (2001) Genetic rescue of remnant tropical trees by an alien pollinator. Proc. Royal Soc. London B. 268:2391–2397

    Article  CAS  Google Scholar 

  • Dick CW, Etchelecu G, Austerlitz F (2003a). Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest. Mol. Ecol. 12:753–764

    Article  Google Scholar 

  • Dick CW, Abdul-Salim K, Bermingham E (2003b) Molecular systematic analysis reveals cryptic Tertiary diversification of a widespread tropical rainforest tree. Am. Nat. 160:691–703

    Article  Google Scholar 

  • Ennos RA (1990) Detection and measurement of selection: genetic and ecological approaches. In: Brown AHD, Clegg MT, Kahler AL, Weir BS. (eds). Plant population genetics, breeding, and genetic resources. Sinauer, Sunderland Massachuset, pp. 200–214

    Google Scholar 

  • Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 19:1349

    Article  PubMed  CAS  Google Scholar 

  • Eusse AM, Aide TM (1999) Patterns of litter production across a salinity gradient in Pterocarpus officinalis tropical wetland. Plant Ecol. 145:307–315

    Article  Google Scholar 

  • Excoffier L (1995) AMOVA 1.55 (Analysis of Molecular Variance). Genetics and Biometry laboratory. University of Geneva, Switzerland

    Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479–491

    PubMed  CAS  Google Scholar 

  • Frankham R (1997) Do island populations have less genetic variation than mainland populations? Heredity 78: 311–327

    Article  PubMed  Google Scholar 

  • Franks SJ, Richards CL, Gonzalez E, Cousins JE, Hamrick JL. (2004). Multi-scale genetic analysis of Uniola Paniculata (Poaceae): a coastal species with a linear, fragmented distribution. Am. J. Bot. 91: 1345–1351

    Article  CAS  Google Scholar 

  • Geburek T (1997) Isozymes and DNA markers in gene conservation of forest trees. Biodivers. Conserv. 6: 1639–1654

    Article  Google Scholar 

  • Hamrick JL, Loveless MD (1989) The genetic structure of tropical trees populations: associations with reproductive biology. In: Bockand JH, Lindhart JH. (eds) Evolutionary Ecology of Plants. Westview Press, Colorado, pp. 129–146

    Google Scholar 

  • Hamrick JL, Nason JD (1996) Consequences of dispersal in plants. In: Rhodes OE, Chesser RK, Smith MH (eds) Population dynamics in ecological space and time. University of Chicago Press, Chicago, pp. 203–236

    Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, et al. (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301: 929–933

    Article  PubMed  CAS  Google Scholar 

  • Imbert E, Lefèvre F (2003) Dispersal and gene flow of Populus nigra (Salicaceae) along a dynamic river system. J. Ecol. 91: 447–456

    Article  Google Scholar 

  • Jones CJ, Edwards KJ, Castaglione S (1997) Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol. Breeding, 3, 381–390

    Google Scholar 

  • Krauss SL, Koch JM (2004) Rapid genetic delineation of provenance for plant community restoration. J. Appl. Ecol. 41: 1162–1173

    Article  Google Scholar 

  • Lemes M, Gribel R, Proctor J, Grattapaglia D (2003) Population genetic structure of mahogany (Swietenia macrophylla King, Meliaceae) across the Brazilian Amazon: Implications for conservation. Mol. Ecol. 12:2875–2883

    Article  PubMed  Google Scholar 

  • Lessa EP (1990) Multidimensional analysis of geographic genetic structure. Syst Zool 39:242–252

    Article  Google Scholar 

  • Liao LC, Hsiao JY (1998) Relationship between population genetic structure and riparian habitat as revealed by RAPD analysis of the rheophyte Acorus gramineus, Soland (Araceae) in Taiwan. Mol. Ecol. 7:1275–1282

    Article  CAS  Google Scholar 

  • Linhart YB, Grant MC (1996) Evolutionary significance of local genetic structure in plants. Annu. Rev. Ecol. Syst. 27:237–277

    Article  Google Scholar 

  • Loiselle BA, Sork VL, Nason JD, Graham D (1995) Spatial genetic structure of tropical understory shrub Psychotria officinalis (Rubiaceae). Am. J. Bot. 82:1420–1425

    Article  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol. Ecol. 3:91–99

    Article  PubMed  CAS  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol. Evol. 18:189–197

    Article  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software Design, Gleneden Beach, Oregon, USA

    Google Scholar 

  • McCune B, Mefford MJ (1999) PC-ORD. Multivariate analysis of ecological data, Version 4. MjM Software Design, Gleneden Beach, Oregon, USA

    Google Scholar 

  • Millar CI, Libby WJ (1991) Strategies for conserving clinal, ecotypic, and disjunct population diversity in widespread species. In: Falk DA, Holsinger KE (eds) Genetics and Conservation of Rare Plants. Oxford University Press, New York, pp.149–170

    Google Scholar 

  • Miller MP (1997a) Tools for population genetics analysis (TFPGA), Version 1.3. A Windows Program for the Analysis of Allozymes and Molecular Population Genetic Data. Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ

    Google Scholar 

  • Miller MP (1997b). AMOVA-Prep A Program for the Preparation of Input Files for use With WINAMOVA. Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ

    Google Scholar 

  • Mitsch WJ, Gosselink JG (2000) Wetlands. Van Nostrands Reinhold Company, New York, NY, USA

  • Moritz C, Faith DP (1998) Comparative phylogeography and the identification of genetically divergent areas for conservation. Mol. Ecol. 7:419–429

    Article  Google Scholar 

  • Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol. Evol. 14: 389–394

    Article  PubMed  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am. Nat. 106: 283–292

    Article  Google Scholar 

  • Novick RS, Dick CW, Lemes M, Navarro C, Caccone A, Bermingham E (2003) Genetic structure of Mesoamerican populations of big-leaf mahogany (Swietenia macrophylla) inferred by microsatellite analysis. Mol. Ecol. 12: 2885–2893

    Article  PubMed  Google Scholar 

  • Oddou-Muratorio S, Demesure-Musch B, Pélissier R, Gouyon (2004) Impacts of gene flow and logging history on the local genetic structure of a scattered tree species, Sorbus torminalis L. Crantz. Mol. Ecol. 13: 3686–3702

    Article  Google Scholar 

  • O’Malley DM, Bawa KS (1987) Mating system of tropical forest tree species. Am. J. Bot. 74: 1143–1149

    Article  Google Scholar 

  • Ouborg NJ, Piquot Y, Van Groenendael M (1999) Population genetics, molecular markers and the study of dispersal in plants. J. Ecol. 87: 551–568

    Article  Google Scholar 

  • Ritland K (1989) Genetic structure, diversity, and inbreeding in the mountain monkey flower (Mimulus caespitosus) of the Washington Cascades. Can. J. Bot. 67: 2017–2024

    Article  Google Scholar 

  • Rivera-Ocasio E, Aide TM, McMillan WO (2002) Patterns of genetic diversity and biogeographical history of the tropical wetland tree, Pterocarpus officinalis (Jacq.), in the Caribbean basin. Mol. Ecol. 11: 675–683

    Article  PubMed  CAS  Google Scholar 

  • Russell JR, Weber JC, Booth A, Powell W, Sotelo-Montes C, Dawson IK (1999) Genetic variation of Calycophyllum spruceanum in the Peruvian Amazon Basin, revealed by amplified fragment length polymorphisms (AFLP) analysis. Mol. Ecol. 8: 199–204

    Article  Google Scholar 

  • Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA (1998) Phylogeographic studies in plants: problems and prospects. Mol. Ecol. 7: 465–474

    Article  Google Scholar 

  • Vos PR, Hogers H, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kupier M, Zabeu M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Williams BL, Brawn JD, Paige KN (2003) Landscape scale genetic effects of habitat fragmentation on a high gene flow species: Speyeria idalia (Nymphalidae). Mol. Ecol. 12: 11–20

    Article  PubMed  CAS  Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol. Evol. 11: 413–418

    Article  Google Scholar 

Download references

Acknowledgements

We thank Steve Rehner, Nicola Flanagan and Dan Lindstrom for valuable discussions and technical advice. We also thank Cristine Heredia and Carlos González for assistance with the experiments. We are grateful to the following people for their help with field collection: Neftalí Rios, Tamara Heartsill and Manuel Ramírez in Puerto Rico; Jess Zimmerman and Louis Redaud in Guadeloupe; Omar López, José Luis Andrade, and Eric Graham in Panama; William Miranda, Deborah Clark, and David Clark in Costa Rica; Andy Whitwell and the Wildlife Section-Forestry Division in Trinidad; Ernesto Medina of the Instituto Nacional de Investigaciones Científicas, Instituto para la Conservación del Lago Maracaibo, and the Instituto Nacional de Parques in Venezuela. We are especially grateful to Andrés García and the International Institute of Tropical Forestry for the help in field collections and logistical support for the watershed scale. We thank François Lefèvre, Ivania Cerón, Neftalí Rios, Christopher Dick, and four anonymous reviewers for their helpful comments on a previous version of this manuscript. This project received financial support from the University of Puerto Rico, CREST-National Science Foundation program, Organization for Tropical Studies-post course fellowship to ERO, NASA-IRA to TMA and the National Science Foundation to WOM (DEB- 9806792).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsie Rivera-Ocasio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivera-Ocasio, E., Aide, T. & McMillan, W. The influence of spatial scale on the genetic structure of a widespread tropical wetland tree, Pterocarpus officinalis (Fabaceae). Conserv Genet 7, 251–266 (2006). https://doi.org/10.1007/s10592-005-9022-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-005-9022-8

Keywords

Navigation