Skip to main content
Log in

Semi-analytical solutions for the problem of the electric potential set in a borehole with a highly conductive casing

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

Highly conductive thin casings pose a great challenge in the numerical simulation of well-logging instruments. Witty asymptotic models may replace the presence of casings by impedance transmission conditions in those numerical simulations. The accuracy of such numerical schemes can be tested against benchmark solutions computed semi-analytically in simple geometrical configurations. This paper provides a general approach to construct those benchmark solutions for three different models: one reference model that indeed considers the presence of the casing; one asymptotic model that avoids computations in the casing domain; and one asymptotic model that reduces the presence of the casing to an interface. Our technique uses a Fourier representation of the solutions, where special care has been taken in the analytical integration of singularities to avoid numerical instabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. See https://www.mathworks.com/help/matlab/ref/polyfit.html for further reference.

References

  • Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions: with formulas, graphs, and mathematical tables, vol 55. Courier Corporation (1964)

  • Duffy, D.G.: Green’s functions with applications. CRC Press, United States (2015)

    Book  MATH  Google Scholar 

  • Durán, M., Godoy, E., Nédélec, J.C.: Computing green’s function of elasticity in a half-plane with impedance boundary condition. Comptes Rendus Mécanique 334(12), 725–731 (2006)

    Article  Google Scholar 

  • Durán, M., Hein, R., Nédélec, J.C.: Computing numerically the green’s function of the half-plane helmholtz operator with impedance boundary conditions. Numer. Math. 107(2), 295–314 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Erdozain, A., Péron, V., Pardo, D.: Asymptotic models for the electric potential across a highly conductive casing. Comput. Math. Appl. 76(8), 1975–2000 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Gao, J., Smirnov, M., Smirnova, M., Egbert, G.: 3-D DC Resistivity Forward Modeling Using the Multi-resolution Grid. Pure Appl. Geophys. 177, 2803–2819 (2020)

    Article  Google Scholar 

  • Kaufman, A.A.: The electrical field in a borehole with a casing. Geophysics 55(1), 29–38 (1990)

    Article  Google Scholar 

  • Kausel, E.: Fundamental Solutions in Elastodynamics: A Compendium. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  • Muga, I., Pardo, D., Matuszyk, P.J., Torres-Verdín, C.: Semi-analytical response of acoustic logging measurements in frequency domain. Comput. Math. Appl. 70(4), 314–329 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Pardo, D., Demkowicz, L.F., Torres-Verdín, C., Michler, C.: PML enhanced with a self-adaptive goal-oriented hp-finite element method: simulation of through-casing borehole resistivity measurements. SIAM J. Sci. Comput. 30(6), 2948–2964 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Pardo, D., Matuszyk, P.J., Puzyrev, V., Torres-Verdín, C., Jin Nam, M., Calo, V.M.: Modeling of Resistivity and Acoustic Borehole Logging Measurements Using Finite Element Methods. Elsevier Science Publishing Co. Inc, Amsterdam (2021)

    Google Scholar 

  • Pardo, D., Torres-Verdín, C., Demkowicz, L.F.: Simulation of multifrequency borehole resistivity measurements through metal casing using a goal-oriented hp finite-element method. Geosci. Remote Sens., IEEE Trans. 44(8), 2125–2134 (2006)

    Article  Google Scholar 

  • Pardo, D., Torres-Verdin, C., Paszynski, M.: Simulations of 3D DC borehole resistivity measurements with a goal-oriented hp finite-element method. Part II: through-casing resistivity instruments. Comput. Geosci. 12(1), 83–89 (2008)

    Article  MATH  Google Scholar 

  • Pardo, D., Torres-Verdín, C., Zhang, Z.: Sensitivity study of borehole-to-surface and crosswell electromagnetic measurements acquired with energized steel casing to water displacement in hydrocarbon-bearing layers. Geophysics 73(6), F261–F268 (2008)

    Article  Google Scholar 

  • Pérez-Arancibia, C., Durán, M.: On the Green’s function for the Helmholtz operator in an impedance circular cylindrical waveguide. J. Comput. Appl. Math. 235(1), 244–262 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Stuwe, H., Werner, P.: A Green’s function approach to wave propagation and potential flow around obstacles in infinite cylindrical channels. Math. Methods Appl. Sci. 19(8), 607–638 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Tokgöz, C., Dural, G.: Closed-form Green’s functions for cylindrically stratified media. IEEE Trans. Microw. Theory Tech. 48(1), 40–49 (2000)

    Article  Google Scholar 

  • Wang, T., Fang, S., Mezzatesta, A.G.: Three-dimensional finite-difference resistivity modeling using an upgridding method. Geosci. Remote Sens., IEEE Trans. 38(4), 1544–1550 (2000)

    Article  Google Scholar 

  • Zemanian, A.H., Anderson, B.: Modeling of borehole resistivity measurements using infinite electrical grids. Geophysics 52(11), 1457–1586 (1987)

    Article  Google Scholar 

  • Zemanian, A.H., Keon An, H.: Finite-difference analysis of borehole flows involving domain contractions around three-dimensional anomalies. Appl. Math. Comput. 26(1), 45–75 (1988)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 777778 (MATHROCKS). G. Pinochet has received funding from the National Agency for Research and Development (ANID), Scholarship Program, Beca de Magíster Nacional 2021 - 22210496. A. Erdozain, V. Péron and I. Muga also have received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 644602 (GEAGAM). I. Muga acknowledges support from the project DI INVESTIGACIÓN INNOVADORA INTERDISCIPLINARIA PUCV 2021 N\(^\mathrm{o}\)039.409/2021. Nanoiónica: Un enfoque interdisciplinario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio Muga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Explicit expressions for the linear systems defining the coefficients of the Fourier modes

As a consequence of the transmission conditions (12) over the solution (11), we observe that \({\mathbf {A}}^k_{\tiny \hbox {ref}}:={\mathbf {A}}^k_{\tiny \hbox {ref}}(\xi ):= (a_{ij}^k(\xi ))_{i,j=1,2,3,4}\) are defined by

$$\begin{aligned} a_{11}^k(\xi )&:= I_k(|\xi | r_{\tiny \hbox {int}}),&a_{12}^k(\xi )&:= - I_k(|\xi | r_{\tiny \hbox {int}}),&a_{13}^k(\xi )&:= - K_k(|\xi | r_{\tiny \hbox {int}}),\\&\\ a_{21}^k(\xi )&:= \sigma _{\tiny \hbox {int}}\ I_k'(|\xi | r_{\tiny \hbox {int}})|\xi |,&a_{22}^k(\xi )&:= - \sigma _{\tiny \hbox {lay}}\ I_k'(|\xi | r_{\tiny \hbox {int}})|\xi |,&a_{23}^k(\xi )&:= - \sigma _{\tiny \hbox {lay}}\ K_k'(|\xi | r_{\tiny \hbox {int}})|\xi |,\\&\\ a_{32}^k(\xi )&:= I_k(|\xi | r_{\tiny \hbox {ext}}),&a_{33}^k(\xi )&:= K_k(|\xi | r_{\tiny \hbox {ext}}),&a_{34}^k(\xi )&:= - K_k(|\xi | r_{\tiny \hbox {ext}}),\\&\\ a_{42}^k(\xi )&:= \sigma _{\tiny \hbox {lay}}\ I_k'(|\xi | r_{\tiny \hbox {ext}})|\xi |,&a_{43}^k(\xi )&:= \sigma _{\tiny \hbox {lay}}\ K_k'(|\xi | r_{\tiny \hbox {ext}})|\xi |,&a_{44}^k(\xi )&:= - \sigma _{\tiny \hbox {ext}}\ K_k'(|\xi | r_{\tiny \hbox {ext}})|\xi |, \end{aligned}$$

and \(a_{14}^k, a_{24}^k, a_{31}^k, a_{41}^k\equiv 0.\) In a similar manner, \({\mathbf {b}}^k_{\tiny \hbox {ref}}:={\mathbf {b}}^k_{\tiny \hbox {ref}}(\xi ):=(b_i^k(\xi ))_{i=1,2,3,4},\) are defined by

$$\begin{aligned} b_1^k(\xi )&:= \dfrac{A}{2\pi \ \sigma _{\tiny \hbox {int}}}\ I_k(|\xi | r_\mathrm {t}) K_k(|\xi | r_{\tiny \hbox {int}}),&b_2^k(\xi )&:= \dfrac{A}{2\pi }\ I_k(|\xi | r_\mathrm {t}) K_k'(|\xi | r_{\tiny \hbox {int}})|\xi |, \end{aligned}$$

and \(b_3,b_4\equiv 0.\)

As a consequence of the transmission conditions (15) over the solution (14), we observe that \({\mathbf {A}}^k_{\tiny \hbox {gap}}:={\mathbf {A}}^k_{\tiny \hbox {gap}}(\xi ):= (a_{ij}^k(\xi ))_{i,j=1,2}\) are defined by

$$\begin{aligned} a_{11}^k(\xi )&:= I_k(|\xi | r_{\tiny \hbox {int}}),\\&\\ a_{12}^k(\xi )&:= - K_k(|\xi | r_{\tiny \hbox {ext}}),\\&\\ a_{21}^k(\xi )&:= \dfrac{\sigma _{\tiny \hbox {int}}}{\sigma _0} \left( \dfrac{\varepsilon ^3}{2r_0}-\varepsilon ^2 \right) I'_k(|\xi | r_{\tiny \hbox {int}})\ |\xi | - \dfrac{1}{2}\left( \xi ^2 + \dfrac{k^2}{r_0^2}\right) I_k(|\xi | r_{\tiny \hbox {int}}),\\&\\ a_{22}^k(\xi )&:= \dfrac{\sigma _{\tiny \hbox {ext}}}{\sigma _0} \left( \dfrac{\varepsilon ^3}{2r_0}+\varepsilon ^2 \right) K'_k(|\xi | r_{\tiny \hbox {ext}})\ |\xi | - \dfrac{1}{2}\left( \xi ^2 + \dfrac{k^2}{r_0^2}\right) K_k(|\xi | r_{\tiny \hbox {ext}}), \end{aligned}$$

In a similar fashion, \({\mathbf {b}}^k_{\tiny \hbox {gap}}:={\mathbf {b}}^k_{\tiny \hbox {gap}}(\xi ):=(b_i^k(\xi ))_{i=1,2},\) are defined by

$$\begin{aligned} b_1^k(\xi )&:= \dfrac{A}{2\pi \ \sigma _{\tiny \hbox {int}}}\ I_k(|\xi | r_\mathrm {t}) K_k(|\xi | r_{\tiny \hbox {int}}), \\ b_2^k(\xi )&:= \dfrac{A}{2\pi \ \sigma _{\tiny \hbox {int}}}\ I_k(|\xi | r_\mathrm {t})\\&\quad \times \left( \dfrac{\sigma _{\tiny \hbox {int}}}{\sigma _0}\left( \dfrac{\varepsilon ^3}{2r_0}-\varepsilon ^2\right) K'_k(|\xi | r_{\tiny \hbox {int}})\ |\xi | - \dfrac{1}{2} \left( \xi ^2+\dfrac{k^2}{r_0^2} \right) K_k(|\xi | r_{\tiny \hbox {int}}) \right) . \end{aligned}$$

Finally, as a consequence of the transmission conditions (17) over the solution (14), we observe that \({\mathbf {A}}^k_{\tiny \hbox {kau}}:={\mathbf {A}}^k_{\tiny \hbox {kau}}(\xi ):= (a_{ij}^k(\xi ))_{i,j=1,2}\) are defined by

$$\begin{aligned} {a}_{11}^k(\xi )&:= I_k(|\xi | r_0),&{a}_{12}^k(\xi )&:= - \dfrac{\sigma _{\tiny \hbox {int}}}{\sigma _{\tiny \hbox {ext}}}\ K_k(|\xi | r_0),\\ {a}_{21}^k(\xi )&:= I'_k(|\xi | r_0)|\xi |,&{a}_{22}^k(\xi )&:= - K'_k(|\xi | r_0)|\xi | + \dfrac{1}{\varepsilon ^2}\dfrac{\sigma _0}{\sigma _{\tiny \hbox {ext}}}\left( \xi ^2 + \dfrac{k^2}{r_0^2}\right) \ K_k(|\xi | r_0), \end{aligned}$$

and \({\mathbf {b}}^k_{\tiny \hbox {kau}}:={\mathbf {b}}^k_{\tiny \hbox {kau}}(\xi ):=(b_i^k(\xi ))_{i=1,2}\) are given by

$$\begin{aligned} {b}_1^k(\xi )&:= \dfrac{A}{2\pi \ \sigma _{\tiny \hbox {int}}}\ I_k(|\xi | r_\mathrm {t})K_k(|\xi | r_0),&{b}_2^k(\xi )&:= \dfrac{A}{2\pi \ \sigma _{\tiny \hbox {int}}}\ I_k(|\xi | r_\mathrm {t})K_k'(|\xi | r_0) |\xi |. \end{aligned}$$

B Bessel functions

We remind the definitions of the Bessel functions of first kind and second kind, and the modified Bessel functions.

Definition 1

Following (Abramowitz and Stegun 1964, Sect. 9.1), for \(k\in {\mathbb {Z}}\), the Bessel functions of first kind \(J_k\) and second kind \(Y_k\) are defined as two independent solutions to the Bessel equation

$$\begin{aligned} x^2 \frac{d^2 y}{dx^2} + x \frac{\mathop {}\!\mathrm {d}y}{\mathop {}\!\mathrm {d}x} + (x^2-k^2) y = 0. \end{aligned}$$

According to the Frobenius method, it is possible to obtain the following series expression for function \(J_k\)

$$\begin{aligned} J_k (x) = \sum _{j=0}^\infty \frac{(-1)^j}{j! \varGamma (j+k+1)} \left( \frac{x}{2} \right) ^{2j+k}, \end{aligned}$$

where \(\varGamma \) represents the Gamma function. Function \(J_k\) can then be used to define \(Y_k\):

$$\begin{aligned} Y_k (x) = \lim _{l \rightarrow k} \frac{J_l(x) \cos (l \pi ) - J_{-l} (x)}{\sin (l\pi )}. \end{aligned}$$

Definition 2

Following (Abramowitz and Stegun 1964, Sect. 9.6), for \(k\in {\mathbb {Z}}\), the modified Bessel functions of first kind \(I_k\) and second kind \(K_k\) are defined as two independent solutions to the modified Bessel equation

$$\begin{aligned} x^2 \frac{\mathop {}\!\mathrm {d}^2 y}{\mathop {}\!\mathrm {d}x^2} + x \frac{\mathop {}\!\mathrm {d}y}{\mathop {}\!\mathrm {d}x} - (x^2+k^2) y = 0. \end{aligned}$$

Finally, we can obtain the expressions of the modified Bessel functions \(I_k\) and \(K_k\) from the definitions of the Bessel functions given in Definition 1

$$\begin{aligned}&I_k (x) = \lim _{l \rightarrow k} i^{-l} J_l(ix),\\&K_k (x) = \lim _{l \rightarrow k} \frac{\pi }{2} \frac{I_{-l} (x)-I_{l} (x)}{\sin (l\pi )}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdozain, A., Muga, I., Péron, V. et al. Semi-analytical solutions for the problem of the electric potential set in a borehole with a highly conductive casing. Int J Geomath 13, 6 (2022). https://doi.org/10.1007/s13137-022-00197-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13137-022-00197-3

Keywords

Mathematics Subject Classification

Navigation