Skip to main content
Log in

Exact solutions of the Navier-Stokes equations generalized for flow in porous media

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Flow of Newtonian fluids in porous media is often modelled using a generalized version of the full non-linear Navier-Stokes equations that include additional terms describing the resistance to flow due to the porous matrix. Because this formulation is becoming increasingly popular in numerical models, exact solutions are required as a benchmark of numerical codes. The contribution of this study is to provide a number of non-trivial exact solutions of the generalized form of the Navier-Stokes equations for parallel flow in porous media. Steady-state solutions are derived in the case of flows in a medium with constant permeability along the main direction of flow and a constant cross-stream velocity in the case of both linear and non-linear drag. Solutions are also presented for cases in which the permeability changes in the direction normal to the main flow. An unsteady solution for a flow with velocity driven by a time-periodic pressure gradient is also derived. These solutions form a basis for validating computational models across a wide range of Reynolds and Darcy numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bear, Dynamics of Fluids in Porous Media (Elsevier, Amsterdam, 1972)

  2. P.Y. Polubarinova-Kochina, Theory of Groundwater Movement (Princeton University Press, Princeton, N.J., 1962)

  3. D.A. Nield, A. Bejan, Convection in Porous Media (Springer, Cham, 2017)

  4. K.G. Boggs, R.W. Van Kirk, G.S. Johnson, J.P. Fairley, P.S. Porter, J. Am. Water Resour. Assoc. 46, 1116 (2010)

    Article  ADS  Google Scholar 

  5. Peter Troch, Emiel van Loon, Arno Hilberts, Adv. Water Resour. 25, 637 (2002)

    Article  ADS  Google Scholar 

  6. E. Daly, A. Porporato, Phys. Rev. E 70, 056303 (2004)

    Article  ADS  Google Scholar 

  7. E. Daly, A. Porporato, Water Resour. Res. 40, W016011 (2004)

    Article  Google Scholar 

  8. M.S. Bartlett, A. Porporato, Water Resour. Res. 54, 767 (2018)

    Article  ADS  Google Scholar 

  9. M.H. Hamdan, Appl. Math. Comput. 62, 203 (1994)

    MathSciNet  Google Scholar 

  10. H.C. Brinkman, Appl. Sci. Res. A1, 27 (1947)

    Google Scholar 

  11. B. Goyeau, D. Lhuillier, D. Gobin, M.G. Velarde, Int. J. Heat Mass Transfer 46, 4071 (2003)

    Article  Google Scholar 

  12. F.J. Valds-Parada, C.G. Aguilar-Madera, J.A. Ochoa-Tapia, B. Goyeau, Adv. Water Resour. 62, 327 (2013)

    Article  ADS  Google Scholar 

  13. H. Akbari, M.M. Namin, Coast. Eng. 74, 59 (2013)

    Article  Google Scholar 

  14. H. Akbari, Coast. Eng. 89, 1 (2014)

    Article  Google Scholar 

  15. H. Basser, M. Rudman, E. Daly, Adv. Water Resour. 108, 15 (2017)

    Article  ADS  Google Scholar 

  16. J.J. Monaghan, Annu. Rev. Fluid Mech. 44, 323 (2012)

    Article  ADS  Google Scholar 

  17. P.G. Drazin, N. Riley, The Navier-Stokes equations: A classification of flows and exact solutions, in London Mathematical Society Lecture Notes Series (Cambridge University Press, Cambridge, 2006)

  18. C.Y. Wang, Appl. Mech. Rev. 42, S269 (1989)

    Article  ADS  Google Scholar 

  19. C.Y. Wang, Annu. Rev. Fluid Mech. 23, 159 (1991)

    Article  ADS  Google Scholar 

  20. A. Bourchtein, Int. J. Numer. Methods Fluids 39, 1053 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  21. W. Khan, F. Yousafzai, M. Ikhlaq Chohan, A. Zeb, G. Zaman, I.H. Jung, Int. J. Pure Appl. Math. 96, 235 (2014)

    Article  Google Scholar 

  22. C. Beckermann, R. Viskanta, S. Ramadhyani, J. Fluid Mech. 186, 257 (2006)

    Article  ADS  Google Scholar 

  23. C. Beckermann, S. Ramadhyani, R. Viskanta, J. Heat Transf. 109, 363 (1987)

    Article  Google Scholar 

  24. D.D. Joseph, D.A. Nield, G. Papanicolaou, Water Resour. Res. 18, 1049 (1982)

    Article  ADS  Google Scholar 

  25. D.A. Nield, Transp. Porous Media 78, 537 (2009)

    Article  Google Scholar 

  26. I. Federico, S. Marrone, A. Colagrossi, F. Aristodemo, M. Antuono, Eur. J. Mech. B/Fluids 34, 35 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  27. W.F. Ames, Nonlinear Ordinary Differential Equations in Transport Processes (Academic Press, New York, 1968)

  28. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965)

  29. C.Y. Wang, J. Appl. Mech. 38, 553 (1971)

    Article  ADS  Google Scholar 

  30. D.A. Nield, Int. J. Heat Mass Transfer 46, 4351 (2003)

    Article  Google Scholar 

  31. P.G. Drazin, W.G. Reid, Hydrodynamic Stability, 2nd ed. (Cambridge University Press, Cambridge, 2004)

  32. Antony A. Hill, Brian Straughan, Stability of Poiseuille flow in a porous medium (Springer, Berlin, Heidelberg, 2010) pp. 287--293

  33. B. Straughan, Stability and wave motion in porous media, in Applied Mathematical Sciences (Springer, New York, 2008)

  34. A.D. Polyanin, V.F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations (CRC Press, Boca Raton, 2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Daly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daly, E., Basser, H. & Rudman, M. Exact solutions of the Navier-Stokes equations generalized for flow in porous media. Eur. Phys. J. Plus 133, 173 (2018). https://doi.org/10.1140/epjp/i2018-11999-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11999-6

Navigation