Skip to main content

Advertisement

Log in

So different but nonetheless the same species: multiple geographic clines explain the diverse forms of the anthidiine bee Rhodanthidium caturigense s.l. (Apoidea: Megachilidae: Anthidiini)

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

The name Rhodanthidium caturigense (s.l.) combines several similar taxa which have been described on the level of form, subspecies or species and which occur in an area which extends from Iran in the south-east, across the Alps in the north and to the Iberian Peninsula in the west. A detailed quantitative assessment of 17 parameters describing the colour pattern reveals that it follows a smooth geographical cline, with rich yellow coloration in the south being gradually replaced by more melanic colorations in the north. The correlation between geographic latitude and colour scores follows a linear pattern and is highly significant in both sexes (p < 0.0001). In addition, the body size also increases with the geographic latitude, also following a linear trend (p < 0.001). Females in the northernmost population are on average 7.0% and males 19.1% larger than those in the southernmost populations. Some morphological features such as the shape of the male clypeus and the form of the axillae are also subject to variation along a south-north cline. Finally, while there is no sexual size dimorphism in the southernmost populations (size difference, p > 0.05), the males are on average 9.7% larger than the females in the northernmost populations (p < 0.0001). These multiple clinal variations result in geographic forms which are often easily distinguishable from each other but need to be regarded as conspecific because of the gradual character change. Additional evidence that all these forms belong to the same species was obtained from sequencing the mitochondrial CO1 gene. The pairwise genetic distance between specimens from various populations is 1.42% with a maximum of 2.7%, and all specimens are allocated to the same Barcode Index Number (BIN) as established by the Barcode of Life Data System based on algorithms that do not use prior taxonomic knowledge. Rhodanthidium caturigense herewith turns out to be a species with high phenotypic plasticity and apparently a high epigenetic capacity to adapt to certain environmental conditions, not based on genotypic selection mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

BMou:

Collection Mira Boustani, Mons (Belgium)

CMK:

Collection Max Kasparek, Heidelberg (Germany)

CSE:

Collection Schmid-Egger [seg], Berlin (Germany)

DEI:

Senckenberg Deutsches Entomologisches Institut (Germany)

JSmit:

Collection Jan Smit, Duiven (the Netherlands)

MS:

Maximilian Schwarz, Ansfelden (Austria)

OLL:

Oberösterreichisches Landesmuseum Linz (Austria)

SMF:

Senckenberg Museum Frankfurt (Germany)

WA:

Collection Werner Arens, Bad Hersfeld (Germany)

ZMB:

Museum für Naturkunde Berlin (Germany)

ZSM:

Zoological State Collection, Munich (Germany)

BIN:

Barcode Index Number

OU:

Operational unit

T1, T2 etc.:

First, second etc. metasomal tergum

s.l.:

Sensu lato

References

  • Alfken, J. D. (1927). Apiden (Ins. Hym.) aus dem nördlichen und östlichen Spanien, gesammelt 1914–1918 von Dr. F. Haas und 1923 von Prof. Dr. A. Seitz. Senckenbergiana, 9, 223–234.

    Google Scholar 

  • Alfken, J. D. (1936). Über die Färbungsveränderlichkeit von Anthidium strigatum Pz. Zum Problem der Rassenbildung. Stettiner Entomologische Zeitung, 97, 189–194.

    Google Scholar 

  • Alfken, J. D. (1938). Ein weiterer Beitrag zur Kenntnis der Bienenfauna von Palästina mit Einschluß des Sinai-Gebirges (Hym. Apid.). Deutsche Entomologischze Zeitschrift, 1938, 418–433.

  • Amiet, F., Herrmann, M., Müller, A., & Neumeyer, R. (2004). Apidae 4: Anthidium, Chelostoma, Coelioxys, Dioxys, Heriades, Lithurgus, Megachile, Osmia, Stelis. In: Fauna Helvetica. Vol. 9. Centre Suisse de Cartographie de la Faune (CSCF) & Schweizerische Entomologische Gesellschaft (SEG).

  • Clusella-Trullas, S., Terblanche, J. S., Blackburn, T. M., & Chown, S. L. (2008). Testing the thermal melanism hypothesis: A macrophysiological approach. Functional Ecology, 22, 232–238.

    Article  Google Scholar 

  • Fateryga, A. V., Proshchalykin, M. Yu., & Maharramov, M. M. (2020). Bees of the tribe Anthidiini (Hymenoptera, Megachilidae) of Nakhchivan Autonomous Republic of Azerbaijan. Entomological Review, 100, 323–336.

    Article  Google Scholar 

  • Friese, H. (1898). Die Bienen Europa’s (Apidae europaeae) nach ihren Gattungen, Arten und Varietäten auf vergleichend morphologisch-biologischer Grundlage. Theil IV: Solitäre Apiden: Genus Eriades. Genus Trachusa. Genus Anthidium. Innsbruck: Akademische Druck- und Verlagsanstalt.

  • Friese, H. (1917). Neue Arten der Bienengattung Anthidium (Hym.) (Paläarktische Region und von Formosa). Deutsche Entomologische Zeitschrift, 1917, 49–60.

    Google Scholar 

  • Gibbs, J. (2018). DNA barcoding a nightmare taxon: Assessing barcode index numbers and barcode gaps for sweat bees. Genome, 61, 21–31.

    Article  CAS  Google Scholar 

  • Giraud, J. (1863). Hyménoptères recueillis aux environs de Suse, en Piémont, et dans le département des Hautes-AIpes, en France et description de quinze espèces nouvelles. Verhandlungen der Zoologisch-Botanischen Gesellschaft Wien, 13, 11–46.

    Google Scholar 

  • Güler, Y. (2011). The wild bee fauna of Afyonkarahisar Province: Andrenidae, Anthophoridae and Megachilidae (Hymenoptera: Apoidea). Linzer Biologische Beiträge, 43, 731–746.

    Google Scholar 

  • Hammer, Ø., Harper D. A. T., & Ryan P. D. (2001). PAST: Paleontological Statistics software package for education and data analysis. Version 3.16. 2017. Palaeontologia Electronica, 4(1), 9.

  • Hebert, P. D. N., Stoeckle, M. Y., Zemlak, T. S., & Francis, C. M. M. (2004). Identification of birds through DNA barcodes. PLoS Biology, 2, e312.

  • Hellrigl, K. (2003). Faunistik der Ameisen und Wildbienen Südtirols (Hymenoptera: Formicidae und Apoidea). Gredleriana, 3, 143–208.

    Google Scholar 

  • Hellrigl, K. (2006). Synopsis der Wildbienen Südtirols: (Hymenoptera: Apidae). Forest Observer, 2(3), 421–472.

    Google Scholar 

  • Huxley, J. S. (1938). Clines: An auxiliary method in taxonomy. Nature, 142, 219–220.

    Article  Google Scholar 

  • Kasparek, M. (2017). The taxonomic identity of Anthidium fasciatellum Friese, 1917 (Hymenoptera: Apoidea: Anthidiini). Journal of Natural History, 51, 1743–1757.

    Article  Google Scholar 

  • Kasparek, M. (2018). Taxonomic revision proves Trachusa pubescens (Morawitz, 1872) sensu lato to be a complex of allopatric and sympatric species in South-Eastern Europe and Western Asia (Hymenoptera, Apoidea, Anthidiini). ZooKeys, 764, 111–144.

    Article  Google Scholar 

  • Kasparek, M. (2019a). Bees in the Genus Rhodanthidium. A review and identification guide. Entomofauna, Supplement, 24, 1–132.

    Google Scholar 

  • Kasparek, M. (2019b). Eoanthidium nasicum (Apoidea: Anthidiini) in the Middle East: From microevolution towards speciation? Oriental Insects, 54, 527–544.

    Article  Google Scholar 

  • Kasparek, M. (2020). Variation in Eoanthidium judaeense (Mavromoustakis, 1945) and E. clypeare (Morawitz, 1873) (Apoidea: Megachilidae: Anthidiini) in the Middle East: Cases of geographic dimorphism? Zoology in the Middle East, 66, 145–166.

    Article  Google Scholar 

  • Kasparek, M., & Lhomme, P. (2019). Revision of the taxonomic status of Rhodanthidium sticticum ordonezi (Dusmet, 1915), an anthidiine bee endemic to Morocco (Apoidea: Anthidiini). Turkish Journal of Zoology, 43, 43–51.

    Article  Google Scholar 

  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549.

    Article  CAS  Google Scholar 

  • Litman, J. R., Griswold, T., & Danforth, B. N. (2016). Phylogenetic systematics and a revised generic classification of anthidiine bees (Hymenoptera: Megachilidae). Molecular Phylogenetics and Evolution, 100, 183–198.

    Article  Google Scholar 

  • Maidl, F. (1922). Beiträge zur Hymenopterenfauna Dalmatiens, Montenegros und Albaniens. I. Teil: Aculeata und Chrysididae. Annalen des Naturhistorischen Museums Wien, 35, 46–106.

    Google Scholar 

  • Mavromoustakis, G. A. (1939). On some anthidiine bees (Apoidea) from Palestine. The Annals and Magazine of Natural History, 11(7), 1938: 15–18.

  • Mavromoustakis, G. A. (1955). On the bees (Hymenoptera, Apoidea) of Lebanon. Part I. The Annals and Magazine of Natural History, 12(8), 326–336.

  • Mavromoustakis, G. A. (1963). On the bees (Hymenoptera, Apoidea) of Lebanon. Part III. The Annals and Magazine of Natural History, 13(5), 1962: 647–655.

  • Mayr, E. (1975). Grundlagen der zoologischen Systematik. Hamburg & Berlin: Parey.

  • Meyer, C. P., & Paulay, G. (2005). DNA barcoding: Error rates based on comprehensive sampling. PLoS Biology, 3, e422.

  • Michener, C. D. (2007). The bees of the world (2nd ed.). The Johns Hopkins University Press.

    Google Scholar 

  • Moczek, A. P. (2015). Developmental plasticity and evolution – quo vadis? Heredity, 115, 302–305.

    Article  CAS  Google Scholar 

  • Morawitz, F. (1876). Zur Bienenfauna der Caucasusländer. Horae Societatis Entomologicae Rossicae, 12, 3–69.

    Google Scholar 

  • Morawitz, F. (1888). Hymenoptera Aculeata Nova. Horae Societatis Entomologicae Rossicae, 22, 224–302.

  • Morawitz, F. (1897). Neue Anthidium-Arten. Horae Societatis Entomologicae Rossicae, 30, 1895–1896, 161–168.

  • Nadimi, A., Talebi, A. A., Zhu, C. D., & Fatihipour, Y. (2014). Study of the tribe Anthidiini (Hymenoptera: Megachilidae) in northern Iran, with the description of a new species. North-Western Journal of Zoology, 10, 413–424.

    Google Scholar 

  • Ornosa, C., Ortiz-Sánchez, F. J., & Torres, F. (2008). Catálogo de los Megachilidae del Mediterráneo occidental (Hymenoptera, Apoidea). III. Anthidiini y Dioxyini. Graellsia, 64, 61–86.

    Article  Google Scholar 

  • Ortiz-Sanchez, F. J. (1990). Contribución al conocimiento de las abejas del género Anthidium Fabricáis, 1804 en Andalucía (Hym., Apoidea, Megachilidae). Boletín de la Asociación Española de Entomología, 14, 251–260.

    Google Scholar 

  • Ortiz-Sanchez, F. J. (2006). Advances in the knowledge of the Apoidea (Hymenoptera) of Southern Spain, an area with a highly diversified fauna. Recent Research Developments in Entomology, 5, 111–145.

    Google Scholar 

  • Ortiz-Sanchez, F. J. (2011). Lista actualizada de las especies de abejas de España (Hymenoptera: Apoidea: Apiformes). Boletín de la Sociedad Entomológica Aragonesa, 49, 265–281.

    Google Scholar 

  • Özbek, H., & van der Zanden, G. (1993). A preliminary review of the Megachilidae of Turkey. Part III. The Anthidiini (Hymenoptera: Apoidea). Türkiye Entomoloji Dergisi, 17, 193–207.

    Google Scholar 

  • Paaby, A. B., & Testa, N. D. (2018). Developmental plasticity and evolution. In: L. Nuño de la Rosa & G. B. Müller (Eds), Evolutionary developmental biology. Heidelberg & New York: Springer.

  • Panzer, G. W. F. (1805 [1804]). Faunae Insectorum Germanicae, Heft 85. Felssecker, Nürnberg.

  • Pasteels, J. J. (1969). La Systématique générique et subgénérique des Anthidiinae (Hymenoptera, Apoidea, Megachilidae) de l‘Ancien Monde. Mémoires de la Société Royale d‘Entomologie de Belgique, 31, 3–148.

  • Phillips, T. (2008). The role of methylation in gene expression. Nature Education, 1, 116.

    Google Scholar 

  • Pigliucci, M. (2001). Phenotypic plasticity: Beyond nature and nurture. Johns Hopkins University Press.

    Google Scholar 

  • Popov, V. B. (1950). Generic groupings of the mid-Asian bees of the subgenus Anthiniinae. Doklady Akademii Nauk SSSR, 70, 315–318.

  • Ratnasingham, S., & Hebert, P. D. N. (2013). A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS One, 8(8), e66213.

  • Salomon, M. (2001). Evolutionary biogeography and speciation: Essay on a synthesis. Journal of Biogeography, 28, 13–27.

    Article  Google Scholar 

  • Salomon, M. (2002). A revised cline theory that can be used for quantified analyses of evolutionary processes without parapatric speciation. Journal of Biogeography, 29, 509–517.

    Article  Google Scholar 

  • Schmid-Egger, C. (2011). Hymenoptera Aculeata from “Parc national du Mercantour” (France) and “Parco delle Alpi Marittime” (Italy) in the south-western Alps. Ampulex, 3, 13–50.

    Google Scholar 

  • Schmidt, S., Schmid-Egger, Ch., Morinière, J., Haszprunar, G., & Hebert, P. D. N. (2015): DNA barcoding largely supports 250 years of classical taxonomy: Identifications for Central European bees (Hymenoptera, Apoidea partim). Molecular Ecology Resources, 15, 985–1000 (including Supporting Information).

  • Shelomi, M. (2012). Where are we now? Bergmann’s rule sensu lato in insects. The American Naturalist, 180, 511–519.

    Article  Google Scholar 

  • Shelomi, M., & Zeuss, D. (2017). Bergmann’s and Allen’s rules in native European and Mediterranean Phasmatodea. Frontier in Ecology and Evolution, 5, 1–25.

    Google Scholar 

  • Steinmann, E. (2002). Die Wildbienen (Apidae, Hymenoptera) einiger inneralpiner Trockentäler. Jahresbericht der Naturforschenden Gesellschaft Graubünden, 111, 5–26.

    Google Scholar 

  • Villalta, I., Ledet, R., Baude, M., Genoud, D., Bouget, Ch., Cornillon, M., Moreau, S., Courtial, B., & Lopez-Vaamonde, C. (2021). A DNA barcode-based survey of wild urban bees in the Loire Valley,France. Scientific Reports, 11, 4770.

    Article  CAS  Google Scholar 

  • Warncke, K. (1980). Die Bienengattung Anthidium Fabricius, 1804 in der Westpaläarktis und im turkestanischen Becken. Entomofauna, 1, 119–209.

    Google Scholar 

  • West-Eberhard, M. J. (2005). Developmental plasticity and the origin of species differences. Proceedings of the National Academy of Sciences, 102, Supplementum 1, 6543–6549.

Download references

Acknowledgements

I wish to thank Werner Arens (Bad Hersfeld, Germany), Mira Boustani (Mons, Belgium), Christian Schmid-Egger (Berlin, Germany), Maximilian Schwarz (Ansfelden, Austria) and Jan Smit (Duiven, the Netherlands), who kindly made material from their private collections available to me. My warm thanks for the loan of material to the Bavarian Zoological State collection, Munich, Germany (Stefan Schmidt); Museum für Naturkunde, Berlin, Germany (Michael Ohl, Viola Richter); Oberösterreichisches Landesmuseum Linz, Austria (Ester Ockermüller, Martin Schwarz, Fritz Gusenleitner); Senckenberg Deutsches Entomologisches Institut, Müncheberg, Germany (Andreas Taeger, Andrew Liston); and Senckenberg Museum Frankfurt, Germany (Steffen U. Pauls, Patricia Peters). Yulia V. Astafurova, Zoological Institute of the Russian Academy of Sciences, St. Petersburg (Russia), took photographs of type specimens for me. I also wish to thank Hasan Koç, Okan Özgül and Rahşan Tunca (Muğla Sıtkı Koçman University, Turkey) for joint field work and various support. For technical support and for advice in the field of genetic barcoding, I wish to thank Hossein Rajaei, State Museum of Natural History, Stuttgart, and Stefan Schmidt, Zoological State Collection, Munich. Andrew Grace is kindly acknowledged for his comments on a draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Kasparek.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasparek, M. So different but nonetheless the same species: multiple geographic clines explain the diverse forms of the anthidiine bee Rhodanthidium caturigense s.l. (Apoidea: Megachilidae: Anthidiini). Org Divers Evol 21, 719–735 (2021). https://doi.org/10.1007/s13127-021-00510-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-021-00510-2

Keywords

Navigation