Skip to main content

On Being a Caterpillar: Structure, Function, Ecology, and Behavior

  • Chapter
  • First Online:
Caterpillars in the Middle

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

In nearly all terrestrial biomes, and especially those dominated by woody plants, caterpillars make up much of the above-ground insect biomass, playing central roles as herbivores, prey for higher trophic levels, and nutrient cyclers. Likewise, they hold special status as the most ecologically conspicuous and taxonomically diverse clade of insect herbivores, with global species diversity likely in excess of 300,000 species. Much of this richness stems from the fine-grained nature of their host plant associations—more than 85% of lepidopterans are believed to be dietary specialists that consume one or a set of closely related host plants. We draw attention to two key attributes of caterpillars that have additionally contributed to their evolutionary success: their collective set of predator avoidance stratagems and manifold and novel uses of silk to solve ecological problems. A principal goal of this introductory chapter is to provide information to ecologists and others about the structure, function, and life history of caterpillars: their basic external and internal anatomy, larval development, population biology and ecology as consumers and the consumed, and other salient attributes. In addition to highlighting many of their adaptations, we make mention of some of their morphological and evolutionary limitations and draw attention to many matters about their biology that remain unexplored or unanswered. We also share much new caterpillar life history data for North American moths.

figure a

Last instar Eupackardia calleta (Saturniidae). When alarmed the caterpillar secretes clear droplets rich in biogenic amines from its dorsal scoli, here from segments A3 and A7–A9; the droplets repel ants and other invertebrate enemies. Photo by Mike Thomas

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo FE, Peiffer M, Tan CW, Stanley BA, Stanley A, Wang J, Jones AG, Hoover K, Rosa C, Luthe D, Felton G (2017) Fall armyworm-associated gut bacteria modulate plant defense responses. Mol Plant Microbe Interact 30(2):127–137. https://doi.org/10.1094/MPMI-11-16-0240-R

  • Aiello A (1984) Adelpha (Lepidoptera: Nymphalidae): deception on the wing. Psyche 91:1–45

    Google Scholar 

  • Aiello A, Balcázar MA (1997) The immature stages of Oxytenis modestia (Cramer), with comments on the mature larvae of Asthenidia and Homoeopteryx (Lepidoptera: Saturniidae: Oxyteninae). J Lepid Soc 51:105–118

    Google Scholar 

  • Akino T, Nakamura KI, Wakamura S (2004) Diet-induced chemical phytomimesis by twig-like caterpillars of Biston robustum Butler (Lepidoptera: Geometridae). Chemoecology 14:65–174

    Article  CAS  Google Scholar 

  • Albert AM (1982) Deviations from Dyar’s rule in Lithobiidae. Zool Anz 208:192–207

    Google Scholar 

  • Appel H (1994) The chewing herbivore gut lumen: physicochemical conditions and their impact on plant nutrients, allelochemicals, and insect pathogens. In: Insect-plant interactions, vol V. CRC Press, Boca Raton, pp 209–223

    Google Scholar 

  • Attygalle AB, Smedley SR, Meinwald J, Eisner T (1993) Defensive secretion of two notodontid caterpillars (Schizura unicornis, S. badia). J Chem Ecol 19:2089–2104. https://doi.org/10.1007/BF00979649

    Article  CAS  PubMed  Google Scholar 

  • Baer CS (2018) Shelter building and extrafloral nectar exploitation by a member of the Aristotelia corallina species complex (Gelechiidae) on Costa Rican acacias. J Lepid Soc 72:44–52

    Google Scholar 

  • Baer CS, Marquis RJ (2020) Between predators and parasitoids: complex interactions among shelter traits, predation and parasitism in a shelter-building caterpillar community. Funct Ecol 34:2186–2198. https://doi.org/10.1111/1365-2435.13641

    Article  Google Scholar 

  • Barber NA, Marquis RJ, Tori W (2008) Invasive prey impacts distribution of native specialist predators. Ecology 89:2678–2683

    Article  PubMed  Google Scholar 

  • Berenbaum MR (1983) Coumarins and caterpillars: a case for coevolution. Evolution 37:163–179

    Article  CAS  PubMed  Google Scholar 

  • Berenbaum MR (1995) Aposematism and mimicry in caterpillars. J Lepid Soc 49:386–396

    Google Scholar 

  • Bernays EA (1998) Evolution of feeding behavior in insect herbivores; success seen as different ways to eat without being eaten. Bioscience 48:35–44

    Article  Google Scholar 

  • Bernays E, Graham BE (1988) On the evolution of host specificity in phytophagous arthropods. Ecology 69:886–892

    Article  Google Scholar 

  • Bernays E, Janzen DH (1988) Saturniid and sphingid caterpillars: two ways to eat leaves. Ecology 69:1153–1160

    Article  Google Scholar 

  • Bernays E, Jarzembowski E, Malcolm S (1991) Evolution of insect morphology in relation to plants [and discussion]. Philos Trans R Soc B Biol Sci 333:257–264. https://doi.org/10.1098/rstb.1991.0075

    Article  Google Scholar 

  • Bernays EA, Chapman RF, Hartmann T (2002) A taste receptor neurone dedicated to the perception of pyrrolizidine alkaloids in the medial galeal sensillum of two polyphagous arctiid caterpillars. Physiol Entomol 27:312–321. https://doi.org/10.1046/j.1365-3032.2002.00304.x

    Article  CAS  Google Scholar 

  • Boege K, Agrawal AA, Thaler JS (2019) Ontogenetic strategies in insect herbivores and their impact on tri-trophic interactions. Curr Opin Insect Sci 32:61–67

    Article  PubMed  Google Scholar 

  • Bogner F, Eisner T (1992) Chemical basis of pupal cannibalism in a caterpillar (Utetheisa ornatrix). Experientia 48:97–102

    Article  CAS  PubMed  Google Scholar 

  • Bowers MD (1993) Aposematic caterpillars: life-styles of the warningly colored and unpalatable. In: Stamp NE, Casey TM (eds) Caterpillars: ecological and evolutionary constraints on foraging. Chapman and Hall, New York, pp 331–371

    Google Scholar 

  • Braun AF (1963) The genus Bucculatrix in America North of Mexico (Microlepidoptera). American Entomological Society, Academy of Natural Sciences, Philadelphia

    Google Scholar 

  • Brower LP (1984) Chemical defence in butterflies. In: Vane-Wright RI, Ackery PR (eds) The biology of butterflies. Academic, New York, pp 109–134

    Google Scholar 

  • Buchon N, Silverman N, Cherry S (2014) Immunity in Drosophila melanogaster—from microbial recognition to whole-organism physiology. Nat Rev Immunol 14:796–810. https://doi.org/10.1038/nri3763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canfield MR, Changh S, Pierce NE (2009) The double cloak of invisibility: phenotypic plasticity and larval decoration in a geometrid moth, Synchlora frondaria, across three diet treatments. Ecol Entomol 34:412–414

    Article  Google Scholar 

  • Carter D, Hargraves B (1986) Caterpillars of butterflies and moths in Britain and Europe. Watson and Viney Ltd, Alyesbury, p 296

    Google Scholar 

  • Cassone BJ, Grove HC, Elebute O, Villanueva SMP, LeMoine CMR (2020) Role of the intestinal microbiome in low-density polyethylene degradation by caterpillar larvae of the greater wax moth, Galleria mellonella. Proc R Soc B 2872020011220200112

    Google Scholar 

  • Caveney S, McClean H, Surry D (1998) Faecal firing in a skipper caterpillar is pressure-driven. J Exp Biol 201:121–133

    Article  PubMed  Google Scholar 

  • Celorio-Mancera Mde L, Sundmalm SM, Vogel H, Rutishauser D, Ytterberg AJ, Zubarev RA, Janz N (2012) Chemosensory proteins, major salivary factors in caterpillar mandibular glands. Insect Biochem Mol Biol:796–805. https://doi.org/10.1016/j.ibmb.2012.07.008

  • Chen CY, Mao YB (2020) Research advances in plant–insect molecular interaction. F1000Research 9:198. https://doi.org/10.12688/f1000research.21502.1

    Article  CAS  Google Scholar 

  • Cole BJ (1980) Growth ratios in holometabolous and hemimetabolous insects. Ann Entomol Soc Am 73:489–491

    Article  Google Scholar 

  • Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annu Rev Ecol Syst 27:305–335

    Article  Google Scholar 

  • Common IFB, Bellas TE (1977) Regurgitation of host-plant oil from a foregut diverticulum in the larvae of Myrascia megalocentra and M. bracteatella (Lepidoptera: Oecophoridae). J Aust Entomol Soc 16:144–147

    Article  Google Scholar 

  • Costa JT, Pierce NE (1997) Social evolution in the Lepidoptera: ecological context and communication in larval societies. In: Choe J, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, MA, pp 407–442

    Chapter  Google Scholar 

  • Courtney SP, Chew FS (1987) Coexistence and host use by a large community of pierid butterflies: habitat is the template. Oecologia 71:210–220

    Article  CAS  PubMed  Google Scholar 

  • Craig CL (1997) Evolution of arthropod silks. Annu Rev Entomol 42:231–267

    Article  CAS  PubMed  Google Scholar 

  • Crumb SE (1956) The larvae of the Phalaenidae. USDA Technical Bulletin 1135. USDA, Washington, DC

    Google Scholar 

  • Crump D, Silverstein RM, Williams HJ, Fitzgerald TD (1987) Identification of trail pheromone of larva of eastern tent caterpillar Malacosoma americanum (Lepidoptera: Lasiocampidae). J Chem Ecol 13:397–402. https://doi.org/10.1007/BF01880088

    Article  CAS  PubMed  Google Scholar 

  • Davis DR (1987) Tineidae. In: Stehr FW (ed) An introduction to immature insects of North America. Kendall-Hunt Publishing Co, Dubuque, pp 362–365

    Google Scholar 

  • Davis DR, Stonis JR (2007) A revision of the new world plant-mining moths of the family Opostegidae (Lepidoptera: Nepticuloidea). Smithsonian Institution Scholarly Press, Washington, DC

    Google Scholar 

  • Davis DR, Quintero DA, Cambra RAT, Aiello A (2008) Biology of a new Panamanian bagworm moth (Lepidoptera: Psychidae) with predatory larvae, and eggs individually wrapped in setal cases. Ann Entomol Soc Am 101:689–702

    Article  Google Scholar 

  • de Nardin J, de AraĂşjo AM (2011) Kin recognition in immatures of Heliconius erato phyllis (Lepidoptera; Nymphalidae). J Ethol 29:499–503

    Article  Google Scholar 

  • Deml R, Dettner K (1993) Biogenic amines and phenolics characterize the defensive secretion of saturniid caterpillars (Lepidoptera: Saturniidae): a comparative study. J Comp Physiol B 163:123–132

    Article  CAS  Google Scholar 

  • Desurmont GA, Köhler A, Maag D, Laplanche D, Xu H, Baumann J, DemairĂ© C, Devenoges D, Glavan M, Mann L, Turlings TCJ (2017) The spitting image of plant defenses: effects of plant secondary chemistry on the efficacy of caterpillar regurgitant as an anti-predator defense. Ecol Evol 7:6304–6313

    Article  PubMed  PubMed Central  Google Scholar 

  • Dethier VG (1937) Cannibalism among lepidopterous larvae. Psyche 44:110–115

    Article  Google Scholar 

  • DeVries PJ (1987) The butterflies of Costa Rica and their natural history. Princeton University Press, Princeton

    Google Scholar 

  • Dookie A, Young C, Lamothe G, Laura S, Yack J (2017) Why do caterpillars whistle at birds? Insect defence sounds startle avian predators. Behav Process 138. https://doi.org/10.1016/j.beproc.2017.02.002

  • Dow JAT (1986) Insect midgut function. Adv Insect Physiol 19:187–328

    Article  CAS  Google Scholar 

  • Duarte M, Robbins RK (2010) Description and phylogenetic analysis of the Calycopidina (Lepidoptera, Lycaenidae, Theclinae, Eumaeini): a subtribe of detritivores. Rev Bras Entomol 54:45–65

    Google Scholar 

  • Dussourd DE (1993) Foraging with finesse: caterpillar adaptations for circumventing plant defenses. In: Stamp NE, Casey TM (eds) Caterpillars: ecological and evolutionary constraints on foraging. Chapman and Hall, New York, pp 92–131

    Google Scholar 

  • Dussourd DE (2017) Behavioral sabotage of plant defenses by insect folivores. Annu Rev Entomol 62:15–34. https://doi.org/10.1146/annurev-ento-031616-035030

    Article  CAS  PubMed  Google Scholar 

  • Dussourd DE, Peiffer M, Felton GW (2016) Chew and spit: tree-feeding notodontid caterpillars anoint girdles with saliva. Arthropod-Plant Interact 10:143–150

    Article  Google Scholar 

  • Dussourd DE, Van Valkenburg M, Rajan K, Wagner DL (2019) A notodontid novelty: Theroa zethus caterpillars use behavior and anti-predator weaponry to disarm host plants. PLoS One 14:e0218994. https://doi.org/10.1371/journal.pone.0218994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dyar HG (1890) The number of molts of lepidopterous larvae. Psyche (Stuttg) 5:420–422

    Article  Google Scholar 

  • Eacock A, Rowland HM, van’t Hof AE, Yung CJ, Edmonds N, Saccheri IJ (2019) Adaptive colour change and background choice behaviour in peppered moth caterpillars is mediated by extraocular photoreception. Comm Biol 2:286. https://doi.org/10.1038/s42003-019-0502-7

    Article  Google Scholar 

  • Eaton JL (1988) Lepidopteran anatomy. Wiley, New York

    Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Eisner T (2003) For love of insects. Belknap Press of Harvard University Press, Cambridge, MA, pp 391–403

    Google Scholar 

  • Eisner TA, Kluge AF, Carrel JC, Meinwald J (1972) Defense mechanisms of arthropods. XXXIV. Formic acid and acyclic ketones in the spray of a caterpillar. Ann Entomol Soc Am 65:765–766

    Article  CAS  Google Scholar 

  • Epstein ME (1995) False-parasitized cocoons and biology of Aididae (Lepidoptera: Zygaenoidea). Proc Entomol Soc 97:750–756

    Google Scholar 

  • Epstein ME, Geertsema H, Naumann CM, Tarmann GE (1998) The Zygaenoidea. In: Kristensen NP (ed) Lepidoptera, moths and butterflies, 1: evolution, systematics, and biogeography, Handbook of zoology. Walter de Gruyter, Berlin, pp 159–180

    Google Scholar 

  • Esperk T, Tammaru T (2006) Determination of female-biased sexual size dimorphism in moths with a variable instar number: the role of additional instars. Eur J Entomol 103:576–586

    Article  Google Scholar 

  • Everson GW, Chapin JB, Normann SA (1990) Caterpillar envenomations: a prospective study of 112 cases. Vet Hum Toxicol 32:114–119

    CAS  PubMed  Google Scholar 

  • Felton GW (2008) Caterpillar secretions and induced plant responses. In: Schaller A (ed) Induced plant resistance to herbivory. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8182-8_18

    Chapter  Google Scholar 

  • Fenton LM, Kennedy Z, Spencer KA (2011) Parasite-induced warning coloration: a novel form of host manipulation. Anim Behav 81:417–422

    Article  Google Scholar 

  • Ferreira C, Capella AN, Sitnik R, Terra WR (1994) Digestive enzymes in midgut cells, endo- and ectoperitrophic contents, and peritrophic membranes of Spodoptera frugiperda (Lepidoptera) larvae. Arch Insect Biochem Physiol 26:299–313

    Article  CAS  Google Scholar 

  • Ferguson DC (1985) Geometroidea: Geometridae (in part). In Dominick RB (ed) The moths of America North of Mexico, fasc. 18.1. Wedge Entomological Research Foundation, Washington, District of Columbia

    Google Scholar 

  • Fiedler K (1991) Systematic, evolutionary and ecological implications of myrmecophily within the Lycaenidae (Insecta: Lepidoptera: Papilionoidea). Bonn Zool Monogr 31:1–210

    Google Scholar 

  • Fitzgerald TD (1976) Trail marking by larvae of the eastern tent caterpillar. Science 194:961–963

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald TD (1995) The tent caterpillars. Cornell University Press, Ithaca

    Google Scholar 

  • Forister ML, Basset Y, Coley PD, Diniz IR, Drozd P, Fox M, Glassmire A, Hazen HR, Hrcek J, Jahner JP, Kozubowski TJ, Kursar TA, Lill J, Marquis RJ, Miller SE, Morais HC, Murakami M, Novotny V, Panorska AK, Pardikes N, Ricklefs RE, Singer MS, Smilanich AM, Stireman JO, Wagner DL, Walla T, Weiblen GD, Dyer LA (2015) The global distribution of diet breadth in insect herbivores. Proc Natl Acad Sci 112:442–447

    Article  CAS  PubMed  Google Scholar 

  • Frankfater C, Tellez MR, Slattery M (2009) The scent of alarm: ontogenetic and genetic variation in the osmeterial gland chemistry of Papilio glaucus (Papilionidae) caterpillars. Chemoecology 19:81–96. https://doi.org/10.1007/s00049-009-0013-y

    Article  CAS  Google Scholar 

  • Freitas AV, Oliveira PS (1992) Biology and behavior of the neotropical butterfly Eunica bechina (Nymphalidae) with special reference to larval defence against ant predation. J Res Lepid 31:1–11

    Google Scholar 

  • Freitas AV, Oliveira PS (1996) Ants as selective agents on herbivore biology: effects on the behaviour of a non-myrmecophilous butterfly. J Anim Ecol 65:205–210

    Article  Google Scholar 

  • Frost C, Hunter MD (2007) Insect herbivores and their frass affect Quercus rubra leaf quality and initial stages of subsequent litter decomposition. Oikos 117:13–22

    Article  Google Scholar 

  • Fukui A (2001) Indirect interactions mediated by leaf shelters in animal–plant communities. Popul Ecol 43:31–40

    Article  Google Scholar 

  • Gaston KJ (1991) The magnitude of global insect species richness. Conserv Biol 5:283–296. https://doi.org/10.1111/j.1523-1739.1991.tb00140.x

    Article  Google Scholar 

  • GlÄ…dalski M, BaĹ„bura M, KaliĹ„ski A, Markowski M, Skwarska J, Wawrzyniak J, ZieliĹ„ski P, CyĹĽewska I, BaĹ„bura J (2015) Inter-annual and inter-habitat variation in breeding performance of Blue Tits (Cyanistes caeruleus) in central Poland. Ornis Fennica 92:34–42

    Google Scholar 

  • Glendinning JI, Nelson NM, Bernays EA (2000) How do inositol and glucose modulate feeding in Manduca sexta caterpillars? J Exp Biol 203:1299–1315

    Article  CAS  PubMed  Google Scholar 

  • Glendinning JI, Brown H, Capoor M, Davis A, Gbedemah A, Long E (2001) A peripheral mechanism for behavioral adaptation to specific “bitter” taste stimuli in an insect. J Neurosci 21:3688–3696. https://doi.org/10.1523/JNEUROSCI.21-10-03688.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glendinning JI, Davis A, Ramaswamy S (2002) Contribution of different taste cells and signaling pathways to the discrimination of “bitter” taste stimuli by an insect. J Neurosci 22:7281–7287. https://doi.org/10.1523/JNEUROSCI.22-16-07281.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant J (2006) Diversification of gut morphology in caterpillars is associated with defensive behavior. J Exp Biol 209:3018–3024. https://doi.org/10.1242/jeb.02335

    Article  PubMed  Google Scholar 

  • Greeney HF, Dyer LA, Smilanich AM (2012) Feeding by lepidopteran larvae is dangerous: a review of caterpillars’ chemical, physiological, morphological, and behavioral defenses against natural enemies. Invertebrate Surviv 9:7–34

    Google Scholar 

  • Greene E (1989) A diet-induced developmental polymorphism in a caterpillar. Science 243(4891):643–646. https://doi.org/10.1126/science.243.4891.643

  • Grunert LW, Clarke JW, Ahuja C, Eswaran H, Nijhout HF (2015) A quantitative analysis of growth and size regulation in Manduca sexta: the physiological basis of variation in size and age at metamorphosis. PLoS One 10:e0127988. https://doi.org/10.1371/journal.pone.0127988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallberg E, Poppy G (2003) Exocrine glands: chemical communication and chemical defense. In: Kristensen NP (ed) Handbuch der Zoologie: Lepidoptera, moths and butterflies, vol 4, pp 361–375

    Google Scholar 

  • Hammer TJ, Bowers MD (2015) Gut microbes may facilitate insect herbivory of chemically defended plants. Oecologia 179:1–14. https://doi.org/10.1007/s00442-015-3327-1

    Article  PubMed  Google Scholar 

  • Hammer T, Janzen D, Hallwachs W, Jaffe S, Fierer N (2017) Caterpillars lack a resident gut microbiome. Proc Natl Acad Sci U S A 114:9641–9646. https://doi.org/10.2307/26487619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammer TJ, Sanders JG, Fierer N (2019) Not all animals need a microbiome. FEMS Microbiol Lett 366:10. https://doi.org/10.1093/femsle/fnz117

    Article  CAS  Google Scholar 

  • Hanski I, Thomas CD (1994) Metapopulation dynamics and conservation: a spatially explicit model applied to butterflies. Biol Conserv 68:167–180

    Article  Google Scholar 

  • Hardwick DF (1996) A monograph to the North American Heliothentinae (Lepidoptera: Noctuidae). Privately published, Almonte

    Google Scholar 

  • Hawkins BA, Cornell HV, Hochberg ME (1997) Predators, parasitoids, and pathogens as mortality agents in phytophagous insect populations. Ecology 78:2145–2152

    Article  Google Scholar 

  • Haylett JM (2000) Distribution of frass produced by larval lepidoptera in a hardwood canopy. MS thesis, Youngstown State University. https://digital.maag.ysu.edu/xmlui/bitstream/handle/1989/6164/b18616343.pdf?sequence=1&isAllowed=y

  • Heinrich B (1979) Foraging strategies of caterpillars: leaf damage and possible predator avoidance strategies. Oecologia 42:325–337

    Article  PubMed  Google Scholar 

  • Heinrich B (1993) How avian predators constrain caterpillar foraging. In: Stamp NE, Casey TM (eds) Caterpillars: ecological and evolutionary constraints on foraging. Chapman and Hall, New York, pp 224–247

    Google Scholar 

  • Hodges RW, Dominick T, Davis DR, Ferguson DC, Franclemont JG, Munroe, EG, Powell JA (1983) Check list of the Lepidoptera of America North of Mexico, Moths of America north of Mexico. The Wedge Entomological Research Foundation, United States of America

    Google Scholar 

  • Hohn FM, Wagner DL (2000) Larval substrates of herminiine noctuids (Lepidoptera), macrodecomposers of leaf litter. Environ Entomol 29:207–212

    Article  Google Scholar 

  • Holmes RT (1980) Resource exploitation patterns and the structure of a forest bird community. Proceedings of the XVII International Ornithology Congress, pp 1056–1062

    Google Scholar 

  • Hoshizaki D (2012) Fat body. In: Chapman R, Simpson S, Douglas A (eds) The insects: structure and function. Cambridge University Press, Cambridge, MA, pp 132–146. https://doi.org/10.1017/CBO9781139035460.009

    Chapter  Google Scholar 

  • Hossler EW (2010) Caterpillars and moths: part II. Dermatologic manifestations of encounters with Lepidoptera. J Am Acad Dermatol 62:13–28

    Article  CAS  PubMed  Google Scholar 

  • Hunter AF (1995) Ecology, life history, and phylogeny of outbreak and non-outbreak species. In: Cappuccino N, Price PW (eds) Population dynamics: new approaches and synthesis. Academic Press, San Diego, pp 41–64

    Chapter  Google Scholar 

  • Hunter M, McNeil J (1997) Host-plant quality influences diapause and voltinism in a polyphagous insect herbivore. Ecology 78:977–986. https://doi.org/10.2307/2265851

    Article  Google Scholar 

  • Jaenike J (1990) Host specialization in phytophagous insects. Annu Rev Ecol Syst 21:243–273

    Article  Google Scholar 

  • Janzen DH (1988) Ecological characterization of a Costa Rican dry forest caterpillar fauna. Biotropica 20:120–135

    Article  Google Scholar 

  • Janzen DH, Hallwach W, Burns JM (2010) A tropical horde of counterfeit predator eyes. PNAS 107:11659–11665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalka M, Kalko EKV (2006) Gleaning Bats as Underestimated predators of herbivorous insects: diet of Micronycteris microtis (Phyllostomidae) in Panama. J Trop Ecol 22:1–10

    Article  Google Scholar 

  • Kant MR, Jonckheere W, Knegt B, Lemos F, Liu J, Schimmel BC, Villarroel CA, Ataide LM, Dermauw W, Glas JJ, Egas M, Janssen A, Van Leeuwen T, Schuurink RC, Sabelis MW, Alba JM (2015) Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities. Ann Bot 115:1015–1051. https://doi.org/10.1093/aob/mcv054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamoto F, Kumata N (1984) Biology and venoms of Lepidoptera. In: Tu AT (ed) Handbook of natural toxins, Vol. 2. Insect poisons, allergens, and other invertebrate venoms. Dekker, New York, pp 291–330

    Google Scholar 

  • Kearby WH (1975) Variable oakleaf caterpillar [Heterocampa manteo] larvae secrete formic acid that causes skin lesions (Lepidoptera: Notodontidae). J Kansas Entomol Soc 48:280–282

    Google Scholar 

  • Keegan KL, Rota J, Zahiri R, Zilli A, Wahlberg N, Schmidt BC, Lafontaine JD, Goldstein PZ, Wagner DL (2021) Towards a global Noctuidae (Lepidoptera) taxonomy. Insect Syst Biodivers 5:1. https://doi.org/10.1093/isd/ixab005

    Article  Google Scholar 

  • Kolosov D, O’Donnell MJ (2019) Chapter five—the Malpighian tubules and cryptonephric complex in lepidopteran larvae. Adv Insect Physiol Academic Press 56:165–202. https://doi.org/10.1016/bs.aiip.2019.01.006

    Article  Google Scholar 

  • Koptur S, Lawton JH (1988) Interactions among vetches bearing extrafloral nectaries, their biotic protective agents, and herbivores. Ecology 69:278–228

    Article  Google Scholar 

  • Kristensen NP, Scoble MJ, Karsholt O (2007) Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. Zootaxa 1668(1):699–747. https://doi.org/10.11646/zootaxa.1668.1.30

  • Krombein KV, Hurd PD, Smith DR, Burks BD (1979) Catalog of Hymenoptera in America north of Mexico. Smithsonian Institution Press, Washington, DC

    Book  Google Scholar 

  • Kuspis D, Rawlins J, Krenzelok B (2001) Human exposure to stinging caterpillar: Lophocampa caryae exposures. Am J Emerg Med 19:396–398

    Article  CAS  PubMed  Google Scholar 

  • Lack D (1950) The breeding seasons of European birds. IBIS 92:288–316. https://doi.org/10.1111/j.1474-919X.1950.tb01753.x

    Article  Google Scholar 

  • Lamas MĂĽller G (2017) The butterflies of Cosñipata: an altitudinal transect study of a megadiverse fauna in southeast Peru. Entomologentagung In: Freising. Abstract, pp 77

    Google Scholar 

  • Lamas G, McInnis ML, Busby RC (2021) The lycaenid butterfly fauna (Lepidoptera) of Cosñipata, Peru: annotated checklist, elevational patterns, and rarity. Insecta Mundi 0861:1–34

    Google Scholar 

  • Laney NK, Ayres MP, Stange EE, Sillett TS, Rodenhouse NL, Holmes RT (2015) Breeding timed to maximize reproductive success for a migratory songbird: the importance of phenological asynchrony. Oikos 125:656–666

    Article  Google Scholar 

  • Lawton JH (1976) The structure of the arthropod community on bracken. Bot J Linn Soc 73:187–216

    Google Scholar 

  • Lawton JH (1978) Host-plant influences on insect diversity: the effects of space and time. Sympos R Entomol Soc Lond 9:105–125

    Google Scholar 

  • Lawton JH (1983) Plant architecture and the diversity of phytophagous insects. Annu Rev Entomol 28:23–29

    Article  Google Scholar 

  • Lawton JH, Schroder D (1977) Effects of plant type, size of geographical range and taxonomic isolation on numbers of insect species associated with British plants. Nature 265:137–140

    Article  Google Scholar 

  • Lederhouse RC (1990) Avoiding the hunt: primary defenses of lepidopteran caterpillars. In: Insect defense: adaptive mechanisms and strategies of prey and predators. State University of New York Press, Albany, pp 175–189

    Google Scholar 

  • Lee KP, Wilson K (2006) Melanism in a larval lepidopteran: repeatability and heritability of a dynamic trait. Ecol Entomol 31:196–205. ISSN 1365-2311

    Google Scholar 

  • Levy SM, Falleiros Ă‚MF, Moscardi F, GregĂłrio EA, Toledo LA (2004) Morphological study of the hindgut in larvae of Anticarsia gemmatalis HĂĽbner (Lepidoptera: Noctuidae). Neotrop Entomol 33:427–431

    Article  Google Scholar 

  • Levy SM, Falleiros A, Moscardi F, GregĂłrio E, Toledo L (2009) Ultramorphology of digestive tract of Anticarsia gemmatalis (HĂĽbner, 1818) (Lepidoptera: Noctuidae) at final larval development. Semina: CiĂŞncias Agrárias 29:313–322

    Google Scholar 

  • Lill JT, Marquis RJ (2007) Microhabitat manipulation: ecosystem engineering by shelter building insects. In: Cuddington KMD, Byers JE, Hastings A, Wilson WG (eds) Ecosystem engineers: concepts, theory, and applications in ecology. Elsevier, San Diego, pp 107–138

    Google Scholar 

  • Lill JT, Marquis RJ, Ricklefs RE (2002) Host plants influence parasitism of forest caterpillars. Nature 417:170–173

    Article  CAS  PubMed  Google Scholar 

  • Lin HT, Trimmer B (2010) Caterpillars use the substrate as their external skeleton: a behavior confirmation. Commun Integr Biol 3:471–474. https://doi.org/10.4161/cib.3.5.12560

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin HT, Slate DJ, Paetsch CR, Dorfmann AL, Trimmer BA (2011) Scaling of caterpillar body properties and its biomechanical implications for the use of a hydrostatic skeleton. J Exp Biol 214:1194–1204

    Article  PubMed  Google Scholar 

  • Malicky H (1969) Versuch einer Analyse der ¨okologischen Beziehungen zwischen Lycaeniden (Lepidoptera) und Formiciden (Hymenoptera). Tijdschr Entomol 112:213–298

    Google Scholar 

  • Malicky H (1970) New aspects on the association between lycaenid larvae (Lycaenidae) and ants (Formicidae, Hymenoptera). J Lepid Soc 24:190–202

    Google Scholar 

  • Market Data Forecast Services (2021). https://www.marketdataforecast.com/. Accessed May 2021

  • Marquis RJ, Passoa S (1989) Seasonal diversity and abundance of the herbivore fauna of striped maple Acer pensylvanicum L. (Aceraceae) in western Virginia. Am Midl Nat 122:313–320

    Article  Google Scholar 

  • McFarland N (1988) Portraits of South Australian geometrid moths. Published by Author

    Google Scholar 

  • McMillan LE, Adamo SA (2020) Friend or foe? Effects of host immune activation on the gut microbiome in the caterpillar Manduca sexta. J Exp Biol 223:jeb226662. https://doi.org/10.1242/jeb.226662

    Article  PubMed  Google Scholar 

  • Men Q, Wu G (2016) Ultrastructure of the sensilla on larval antennae and mouthparts of the simao pine moth, Dendrolimus kikuchii Matsumura (Lepidoptera: Lasiocampidae). Proc Entomol Soc Wash 118:373–381

    Article  Google Scholar 

  • Miller JS, Wagner DL, Opler PA (2021) Noctuoidea, Notodontidae (part): Heterocampinae, Nystaleinae, Dioptinae, and Dicranurinae. In: Lafontaine JD et al (eds) The moths of North America, fasc. 22.1A (in press)

    Google Scholar 

  • Mitter C, Farrell B, Wiegmann B (1988) The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification? Am Nat 132:107–128

    Article  Google Scholar 

  • Mitter C, Davis DR, Cummings MR (2017) Phylogeny and evolution of Lepidoptera. Annu Rev Entomol 62:265–283

    Article  CAS  PubMed  Google Scholar 

  • Montgomery SL (1983) Carnivorous caterpillars: the behavior, biogeography and conservation of Eupithecia (Lepidoptera: Geometridae) in the Hawaiian Islands. GeoJournal 7:549–556. https://doi.org/10.1007/BF00218529

    Article  Google Scholar 

  • Moore RG, Hanks LM (2004) Aerial dispersal and host plant selection by neonate Thyridopteryx ephemeraeformis (Lepidoptera: Psychidae). Ecol Entomol 29:327–335. https://doi.org/10.1111/j.0307-6946.2004.00611.x

    Article  Google Scholar 

  • Moraes AR, Greeney HF, Oliveira PS, Barbosa EP, Freitas AV (2012) Morphology and behavior of the early stages of the skipper, Urbanus esmeraldus, on Urera baccifera, an ant-visited host plant. J Insect Sci 12:52. https://doi.org/10.1673/031.012.5201

    Article  PubMed  PubMed Central  Google Scholar 

  • Morewood WD, Ring RA (1998) Revision of the life history of the High Arctic moth Gynaephora groenlandica (Wocke) (Lepidoptera: Lymantriidae). Can J Zool 76:1371–1381

    Article  Google Scholar 

  • Musser RO, Hum-Musser SM, Eichenseer H, Peiffer M, Ervin G, Murphy JB, Felton GW (2002) Herbivory: caterpillar saliva beats plant defences. Nature 416:599–600

    Article  CAS  PubMed  Google Scholar 

  • Nall B (2020) American snout (Libytheana carinenta) life history. Southern Lepid News 42:212–214

    Google Scholar 

  • Narango DL, Tallamy DW, Shropshire KJ (2020) Few keystone plant genera support the majority of Lepidoptera species. Nat Commun 11:5751. https://doi.org/10.1038/s41467-020-19565-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Needham JG (1948) A bucculatricid gall and its hypermetamorphosis. J N Y Entomol Soc LVI:43–50

    Google Scholar 

  • Needham JG, Frost SW, Tothill BH (1928) Leaf mining Insects. Williams and Watkins Co, Baltimore

    Book  Google Scholar 

  • NgĂ´ T, Bechtold T (2018) Analysis of the fibroin solution state in calcium chloride/water/ethanol for improved understanding of the regeneration process. Fibres Textile East Eur 26:43–50. https://doi.org/10.5604/01.3001.0012.5174

    Article  CAS  Google Scholar 

  • Nishida K, Robbins RK (2020) One side makes you taller: a mushroom–eating butterfly caterpillar (Lycaenidae) in Costa Rica. Neotrop Biol Conserv 15:463–470

    Article  Google Scholar 

  • Noor MA, Parnell RS, Grant BS (2008) A reversible color polyphenism in American peppered moth (Biston betularia cognataria) caterpillars. PLoS One 3:e3142. https://doi.org/10.1371/journal.pone.0003142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nothnagle PJ, Schultz JC (1987) What is a forest pest? In: Barbosa P, Schultz JC (eds) Insect outbreaks. Academic, New York, pp 59–80

    Chapter  Google Scholar 

  • Osborn F, Jaffe K (1998) Chemical ecology of the defense of two nymphalid butterfly larvae against ants. J Chem Ecol 24:1173–1186

    Article  CAS  Google Scholar 

  • Peters W (1992) Functions of peritrophic membranes. In: Peritrophic membranes, Zoophysiology, vol 30. Springer, Heidelberg. https://doi.org/10.1007/978-3-642-84414-0_6

    Chapter  Google Scholar 

  • Peterson SC, Johnson ND, Leguyader JL (1987) Defensive regurgitation of allelochemicals derived from host cyanogenesis by eastern tent caterpillars. Ecology 68:1268–1272

    Article  Google Scholar 

  • Phalnikar K, Kunte K, Agashe D (2019) Disrupting butterfly caterpillar microbiomes does not impact their survival and development. Proc R Soc B 286:20192438. https://doi.org/10.1098/rspb.2019.2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierce NE (1995) Predatory and parasitic Lepidoptera: carnivores living on plants. J Lepid Soc 49:412–453

    Google Scholar 

  • Pierce NP, Braby MF, Heath A, Lohman DJ, Mathew J, Rand DB, Travassos MA (2002) The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu Rev Entomol 47:733–771

    Article  CAS  PubMed  Google Scholar 

  • Pohl GR, Patterson R, Pelham J (2016) Annotated taxonomic checklist of the Lepidoptera of North America, North of Mexico. Working paper published online by the authors at Research Gate.net

  • Porter J (1997) The colour identification guide to caterpillars of the British Isles. Viking Press, London

    Google Scholar 

  • Posledovich D, Toftegaard T, Wiklund C, EhrlĂ©n J, Gotthard K (2015) Latitudinal variation in diapause duration and post-winter development in two pierid butterflies in relation to phenological specialization. Oecologia 177:181–190. https://doi.org/10.1007/s00442-014-3125-1

    Article  PubMed  Google Scholar 

  • Poulton EB (1892) Further experiments upon the colour-relation between certain lepidopterous larvae, pupae, cocoons, and imagines and their surroundings. Trans Entom Soc Lond 40:293–487

    Article  Google Scholar 

  • Powell JA (1980) Evolution of larval food preferences in Microlepidoptera. Annu Rev Entomol 25:133–159

    Article  Google Scholar 

  • Powell JA (1989) Synchronized, mass-emergences of a yucca moth, Prodoxus y-inversus (Lepidoptera: Prodoxidae), after 16 and 17 years in diapause. Oecologia 81:490–493. https://doi.org/10.1007/BF00378957

    Article  PubMed  Google Scholar 

  • Powell JA, Mitter C, Farrell B (1998) Evolution of larval food preferences in Lepidoptera. In: Kristensen NP (ed) Lepidoptera: moths and butterflies. Vol 1. Evolution, systematics, and biogeography. Handbook of zoology. De Gruyter, New York/Berlin, pp 403–422

    Google Scholar 

  • Price PW (1997) Insect ecology, 3rd edn. Wiley, New York

    Google Scholar 

  • Prudic KL, Oliver JC, Sperling FAH (2007) The signal environment is more important than diet or chemical specialization in the evolution of warning coloration. PNAS 104:19381–19386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsay J (1976) The rectal complex in the larvae of Lepidoptera. Philos Trans R Soc Lond Ser B Biol Sci 274:203–226

    CAS  Google Scholar 

  • Rawlins JE (1984) Mycophagy in Lepidoptera. In: Wheeler Q, Blackwell M (eds) Fungus-insect relationships. Perspectives in ecology and evolution. Columbia University Press, New York, pp 382–483

    Google Scholar 

  • Ray S, Gaffor I, Acevedo FE, Helms A, Chuang WP, Tooker J, Felton GW, Luthe DS (2015) Maize plants recognize herbivore-associated cues from caterpillar frass. J Chem Ecol 41:781–792

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Basu S, Rivera-Vega LJ, Acevedo FE, Louis J, Felton GW, Luthe DS (2016) Lessons from the far end: caterpillar FRASS-induced defenses in maize, rice, cabbage, and tomato. J Chem Ecol 42:1130–1141

    Article  CAS  PubMed  Google Scholar 

  • Reavey D (1993) Why body size matters in caterpillars. In: Stamp NE, Casey TM (eds) Caterpillars: ecological and evolutionary constraints on foraging. Chapman and Hall, New York, pp 248–279

    Google Scholar 

  • Richardson ML, Mitchell RF, Reagel PF, Hanks LM (2010) Causes and consequences of cannibalism in noncarnivorous insects. Annu Rev Entomol 55:39–53

    Article  CAS  PubMed  Google Scholar 

  • Risley LS, Crossley DA Jr (1988) Herbivore-caused greenfall in the southern Appalachians. Ecology 69:1118–1127

    Article  Google Scholar 

  • Rota J, Wagner DL (2008) Wormholes, sensory nets and hypertrophied tactile setae: the extraordinary defence strategies of Brenthia caterpillars. Anim Behav 76:1709–1713

    Article  Google Scholar 

  • Rothschild M (1973) Secondary substances and warning colouration in insects. In: Van Emdem HF (ed) Insect-plant relationships. Symp Roy Entomol Soc Lond 6:59–83

    Google Scholar 

  • Rothschild M (1985) British aposematic Lepidoptera. In: Heath J, Emmet AM (eds) The moths and butterflies of Great Britain and Ireland, Part 2. Harley Books, Colchester, pp 9–62

    Google Scholar 

  • Rothschild M (1993) Phytochemical selection of aposematic insects. Phytochemistry 33:1037. https://doi.org/10.1016/0031-9422(93)85018-M

    Article  CAS  Google Scholar 

  • Rubinoff D, Haines WP (2005) Web-spinning caterpillar stalks snails. Science 309:575

    Article  CAS  PubMed  Google Scholar 

  • Ruf C, Costa J, Fiedler K (2001) Trail-based communication in social caterpillars of Eriogaster lanestris (Lepidoptera: Lasiocampidae). J Insect Behav 14:231–245

    Article  Google Scholar 

  • Salazar BA, Whitman DW (2001) Defensive tactics of caterpillars against predators and parasitoids. In: Ananthakrishnan TN (ed) Insect and plant defense dynamics. Science Publishers, Enfield, pp 161–207

    Google Scholar 

  • Schowalter TD (2017) Insect ecology: an ecosystems approach, 4th edn. Academic Press, New York

    Google Scholar 

  • Schultz JC (1983) Habitat selection and foraging tactics of caterpillars in heterogeneous trees. In: Denno RF, McClure MS (eds) Variable plants and herbivores in natural and managed systems. Academic, New York, pp 61–90

    Chapter  Google Scholar 

  • Schultz CB, Haddad NM, Henry EH, Crone EE (2019) Movement and demography of at-risk butterflies: building blocks for conservation. Annu Rev Entomol 64:167–184

    Article  CAS  PubMed  Google Scholar 

  • Scoble MJ (1992) The Lepidoptera: form, function and diversity. Oxford University Press, Oxford

    Google Scholar 

  • Scudder SH (1889) Butterflies of the United States and Canada with special reference to New England, vol III. Cambridge, MA, published by author

    Google Scholar 

  • Singer MS, Bernays EA, Carriere Y (2002) The interplay between nutrient balancing and toxin dilution in foraging by a generalist insect herbivore. Anim Behav 64:629–643

    Article  Google Scholar 

  • Smedley SRE, Ehrhardt E, Eisner T (1993) Defensive regurgitation by a noctuid moth larva (Litoprosopus futilis). Psyche 100:209–221

    Article  Google Scholar 

  • Smedley SR, Schroeder FC, Weibel DB, Meinwald J, Lafleur KA, Renwick JA, Rutowski R, Eisner T (2002) Mayolenes: labile defensive lipids from the glandular hairs of a caterpillar (Pieris rapae). Proc Natl Acad Sci U S A 99:6822–6827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith NG (1983) Host plant toxicity and migration in the dayflying moth Urania. Flor Entomol 66:76–85

    Article  Google Scholar 

  • Smith KW, Smith L (2019) Does the abundance and timing of defoliating caterpillars influence the nest survival and productivity of the Great Spotted Woodpecker Dendrocopos major? Bird Study 66:187–197. https://doi.org/10.1080/00063657.2019.1637396

    Article  Google Scholar 

  • Snäll N, Tammaru T, Wahlberg N, Viidalepp J, Ruohomaki K, Savontaus ML, Huoponen K (2007) Phylogenetic relationships of the tribe Operophterini (Lepidoptera, Geometridae): a case study of the evolution of female flightlessness. Biol J Linn Soc 92:241–252

    Article  Google Scholar 

  • Song YQ, Sun HZ, Wu JX (2014) Morphology of the sensilla of larval antennae and mouthparts of the oriental fruit moth Grapholita molesta. Bull Insectol 67:193–198

    Google Scholar 

  • Stamp NE, Wilkens RT (1993) On the cryptic side of life: being unapparent to enemies and the consequences for foraging and growth of caterpillars. In: Stamp NE, Casey TM (eds) Caterpillars: ecological and evolutionary constraints on foraging. Chapman and Hall, New York, pp 283–330

    Google Scholar 

  • Strong DR, Levin DA (1979) Species richness of plant parasites and growth form of their hosts. Am Nat 114:1–22

    Article  Google Scholar 

  • Strong DR, Southwood JH, Southwood Sir R (1984) Insects on plants: community patterns and mechanisms. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Sugiura S, Yamazaki K (2006) The role of silk threads as lifelines for caterpillars: pattern and significance of lifeline-climbing behaviour. Ecol Entomol 31:52–57

    Article  Google Scholar 

  • Sutherland TD, Young JH, Weisman S, Hayashi CY, Merritt DJ (2010) Insect silk: one name, many materials. Annu Rev Entomol 55:171–188

    Article  CAS  PubMed  Google Scholar 

  • Suzuki TN, Sakurai R (2015) Bent posture improves the protective value of bird dropping masquerading by caterpillars. Anim Behav 105:79–84

    Article  Google Scholar 

  • Tallamy DW, Shropshire KJ (2009) Ranking lepidopteran use of native versus introduced plants. Conserv Biol 4:941–947. https://doi.org/10.1111/j.1523-1739.2009.01202.x. PMID: 19627321

    Article  Google Scholar 

  • Tautz J, Markl H (1978) Caterpillars detect flying wasps by hairs sensitive to airborne vibration. Behav Ecol Sociobiol 4:101–110. https://doi.org/10.1007/BF00302564

    Article  Google Scholar 

  • Taylor CJ, Yak JE (2019) Hearing in caterpillars of the monarch butterfly (Danaus plexippus). J Exp Biol 222:jeb211862. https://doi.org/10.1242/jeb.211862

    Article  PubMed  Google Scholar 

  • Tindale NBT (1932) Revision of Australian ghost moths (Lepidoptera Homoneura, family Hepialidae). Part I. Rec S Aust Mus 4:497–536

    Google Scholar 

  • Todd TL (2018) A review of three species-level taxa of the Anthocharis sara complex (Lepidoptera: Pieridae: Pierinae: Anthocharidini). Insecta Mundi 1133:1–39

    Google Scholar 

  • Torres KP, Artieda N, Salazar P, Willmott KR, Hill RI (2019) Life history descriptions of Adelpha attica attica, Adelpha epione agilla, and Adelpha jordani from an eastern Ecuador lowland forest. Trop Lepid Res 29:19–28

    Google Scholar 

  • Traxler F (1977) General anatomical features of the gypsy moth larva Lymantria dispar (Linnaeus) (Lepidoptera: Lymantriidae). J NY Entomol Soc 85:71–97

    Google Scholar 

  • van Nieukerken EJ (2011) Order Lepidoptera Linnaeus, 1758. In: Zhang ZQ (ed) Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148:212–221

    Google Scholar 

  • Vegliante F, Hasenfuss I (2012) Morphology and diversity of exocrine glands in lepidopteran larvae. Annu Rev Entomol 57:187–204

    Article  CAS  PubMed  Google Scholar 

  • Wagner DL (1985) The biosystematics of the Holarctic Hepialidae, with special emphasis on the Hepialus californicus species group. PhD dissertation, University of California, Berkeley, California

    Google Scholar 

  • Wagner DL (2005) Caterpillars of eastern North America: a guide to identification and natural history. Princeton University Press, Princeton

    Google Scholar 

  • Wagner DL (2009) The immature stages: structure, function, behavior, and ecology. In: Conner WE (ed) Tiger moths and woolly bears: behavior, ecology, and evolution of the Arctiidae. Oxford University Press, Oxford, pp 31–53

    Google Scholar 

  • Wagner DL (2013) The biodiversity of moths. In: Levin S et al (eds) Encyclopedia of diodiversity. Academic Press, San Diego, pp 384–403

    Chapter  Google Scholar 

  • Wagner DL, Liebherr JK (1992) Flightlessness in insects. Trends Ecol Evol 7:216–220

    Article  CAS  PubMed  Google Scholar 

  • Wagner DL, Loose JL, Fitzgerald TD, DeBenedictis JA, Davis DR (2000) A hidden past: the hypermetamorphic development of Marmara arbutiella (Lepidoptera: Gracillariidae). Ann Entomol Soc Am 93:59–64

    Article  Google Scholar 

  • Wagner DL, Ferguson DC, McCabe T, Reardon RC (2002) Geometroid caterpillars of Northeastern and Appalachian forests. USFS Technology Transfer Bulletin, FHTET-2001-10. USDA Forest Service, Morgantown, p 239

    Google Scholar 

  • Wagner DL, Hossler EW, Hossler FE (2006) Not a tiger but a dagger: the larva of Comachara cadburyi and reassignment of the genus to the Acronictinae (Lepidoptera: Noctuidae). Ann Entomol Soc Am 99:638–647

    Article  Google Scholar 

  • Wagner DL, Rota JR, McCabe TL (2008) Larva of Abablemma (Lepidoptera: Noctuidae: Hypenodinae) with notes on lichenivory and algivory in Macrolepidoptera. Ann Entomol Soc Am 101:40–52

    Article  Google Scholar 

  • Wagner DL, Schweitzer DF, Sullivan JB, Reardon RC (2011) Owlet caterpillars of Eastern North America. Princeton University Press, Princeton

    Google Scholar 

  • Wahlberg M, Wheat CW, Peña C (2013) Timing and patterns in the taxonomic diversification of Lepidoptera (butterflies and moths). PLoS One. https://doi.org/10.1371/journal.pone.0080875

  • Wang X, Kang L (2014) Molecular mechanisms of phase change in locusts. Annu Rev Entomol 59:225–244

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Lu H, Shao Y, Zong S (2018) Morphological and ultrastructural characterization of the alimentary canal in larvae of Streltzoviella insularis (Staudinger) (Lepidoptera: Cossidae). Entomol Res 48:288–299

    Article  Google Scholar 

  • Wardhaugh CW (2014) The spatial and temporal distributions of arthropods in forest canopies: uniting disparate patterns with hypotheses for specialisation. Biol Rev 89:1021–1041. https://doi.org/10.1111/brv.12094

    Article  PubMed  Google Scholar 

  • Weinhold A, Baldwin IT (2011) Trichome-derived O-acyl sugars are a first meal for caterpillars that tags them for predation. PNAS 108:7855–7859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss MR (2003) Good housekeeping: why do shelter-dwelling caterpillars fling their frass? Ecol Lett 6:361–370

    Article  Google Scholar 

  • Weiss MR (2006) Defecation behavior and ecology of insects. Annu Rev Entomol 51:635–661

    Article  CAS  PubMed  Google Scholar 

  • Welch BJ, Obadi OM, Lampert EC (2017) Effects of carotenoid sequestration on a caterpillars cryptic coloration and susceptibility to predation. Entomol Exp Appl 163:177–183. https://doi.org/10.1111/eea.12558

    Article  CAS  Google Scholar 

  • WesoĹ‚owski T, RowiĹ„ski P (2014) Do blue tits Cyanistes caeruleus synchronize reproduction with caterpillar peaks in a primeval forest? Bird Study 61:231–245

    Article  Google Scholar 

  • Whitman DW, Blum MS, Slansky F Jr (1994) Carnivory in phytophagous insects. In: Ananthakrishnan TN (ed) Functional dynamics of phytophagous insects. Oxford and IBH, New Delhi, pp 161–205

    Google Scholar 

  • Willmott KR (2003) The genus Adelpha: its systematics, biology and biogeography. Scientific Publishers, Gainesville

    Google Scholar 

  • Zacharczenko BV (2017) Resolving the systematics of Acronictinae (Lepidoptera, Noctuidae), the evolution of larval defenses, and tracking the gain/loss of complex courtship structures in Noctuidae. Doctoral dissertations 1482. https://opencommons.uconn.edu/dissertations/1482

  • Zago-Braga RC, Zucoloto FS (2004) Cannibalism studies on eggs and newly hatched caterpillars in a wild population of Ascia monuste (Godart) (Lepidoptera, Pieridae). Rev Bras Entomol 48:415–420

    Article  Google Scholar 

  • Zarlucki MP, Clarke AR, Malcolm SB (2002) Ecology and behavior of first instar larval Lepidoptera. Annu Rev Entomol 47:361–393. https://doi.org/10.1146/annurev.ento.47.091201.145220

    Article  Google Scholar 

  • Zaspel JM, Weller SJ, Epstein ME (2016) Origin of the hungry caterpillar: evolution of fasting in slug moths (Insecta: Lepidoptera: Limacodidae). Mol Phylogenet Evol 94:827–832. https://doi.org/10.1016/j.ympev.2015.09.017

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Annette Aiello, Christina Baer, Alex Baranowski, Deane Bowers, Sue Carnahan, David Dussourd, Eric LoPresti, Tanner Matson, Steve Passoa, Moria Robinson, Robert Robbins, Angela Smilanich, Doug Tallamy, David Webb, as well as our editors made helpful suggestions that greatly improved earlier drafts of this chapter. Virginia Wagner contributed the line art for Fig. 2 (reproduced from Wagner 2005). Sam Jaffe of The Caterpillar Lab provided the edited image of the Pieris anatomy original painted by Paul Pfurtscheller. Images which greatly added to this effort (in decreasing number) were graciously shared by Berry Nall, Annette Aiello, Mike Thomas, Marc Epstein, Robert Behrstock, Pat Burkett, Jadranka Rota, Gerry Salmon, Doug Tallamy, and Keith Willmott. Alex Baranowski, Jim Roberts, and Abby Ann Sisk provided larvae for study. This work was supported by USFS Co-op Agreement #19DG11420000057 5653380, Earthwatch Institute, and grants from the Richard P. Garmany Fund (Hartford Foundation for Public Giving).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wagner, D.L., Hoyt, A.C. (2022). On Being a Caterpillar: Structure, Function, Ecology, and Behavior. In: Marquis, R.J., Koptur, S. (eds) Caterpillars in the Middle. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-86688-4_2

Download citation

Publish with us

Policies and ethics