Skip to main content

Advertisement

Log in

MicroRNA-126 (MiR-126): key roles in related diseases

  • Review
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

In eukaryotes such as humans, some non-coding single-stranded RNAs (ncRNAs) help to regulate the pre- and post-transcriptional expression of certain genes, which in turn control many important physiological processes, such as cell proliferation, distinctions, invasion, angiogenesis, and embryonic development. microRNA-126 is an important member of these miRNAs that can be directly or indirectly involved in the control of angiogenesis. Recently, numerous studies have expounded that microRNA-126 can inhibit or promote angiogenesis as well as attenuate inflammatory responses through complex molecular mechanisms. As such, it serves as a biomarker or potential therapeutic target for the prediction, diagnosis, and treatment of relevant diseases. In this review, we present the advancements in research regarding microRNA-126’s role in the diagnosis and treatment of related diseases, aiming to provide innovative therapeutic options for the diagnosis and treatment of clinically relevant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Alhasan L (2019) MiR-126 Modulates Angiogenesis in Breast Cancer by Targeting VEGF-A -mRNA. Asian Pac J Cancer Prev: APJCP 20:193–197. https://doi.org/10.31557/APJCP.2019.20.1.193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bao J, Yu Y, Chen J, He Y et al (2018) MiR-126 negatively regulates PLK-4 to impact the development of hepatocellular carcinoma via ATR/CHEK1 pathway. Cell Death Dis 9:1045. https://doi.org/10.1038/s41419-018-1020-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cerutti C, Edwards LJ, De Vries HE, Sharrack B et al (2017) MiR-126 and miR-126* regulate shear-resistant firm leukocyte adhesion to human brain endothelium. Sci Rep 7:45284. https://doi.org/10.1038/srep45284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen C, Zhang L, Huang H, Liu S et al (2018) Serum miR-126-3p level is down-regulated in sepsis patients. Int J Clin Exp Pathol 11:2605–2612

    PubMed  PubMed Central  Google Scholar 

  5. Chen SR, Cai WP, Dai XJ, Guo AS et al (2019) Research on miR-126 in glioma targeted regulation of PTEN/PI3K/Akt and MDM2-p53 pathways. Eur Rev Med Pharmacol Sci 23:3461–3470. https://doi.org/10.26355/eurrev_201904_17711

    Article  PubMed  Google Scholar 

  6. Chen X, Yu X, Li X, Li L et al (2020) MiR-126 targets IL-17A to enhance proliferation and inhibit apoptosis in high-glucose-induced human retinal endothelial cells. Biochem Cell Biol = Biochim Biol Cell 98:277–283. https://doi.org/10.1139/bcb-2019-0174

    Article  CAS  Google Scholar 

  7. Chistiakov DA, Orekhov AN, Bobryshev YV (2016) The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease. J Mol Cell Cardiol 97:47–55. https://doi.org/10.1016/j.yjmcc.2016.05.007

    Article  CAS  PubMed  Google Scholar 

  8. Ebrahimi F, Gopalan V, Smith RA, and Lam AK-Y (2014) miR-126 in human cancers: clinical roles and current perspectives. Exp Mol Pathol 96. https://doi.org/10.1016/j.yexmp.2013.12.004

  9. Fan JL, Zhang L, Bo XH (2020) MiR-126 on mice with coronary artery disease by targeting S1PR2. Eur Rev Med Pharmacol Sci 24:893–904. https://doi.org/10.26355/eurrev_202001_20074

    Article  PubMed  Google Scholar 

  10. Fang S, Ma X, Guo S, Lu J (2017) MicroRNA-126 inhibits cell viability and invasion in a diabetic retinopathy model via targeting IRS-1. Oncol Lett 14:4311–4318. https://doi.org/10.3892/ol.2017.6695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fei L, Zhang N, Zhang J (2022) Mechanism of miR-126 in hypoxia-reoxygenation-induced cardiomyocyte pyroptosis by regulating HMGB1 and NLRP3 inflammasome. Immunopharmacol Immunotoxicol 44:500–509. https://doi.org/10.1080/08923973.2022.2054819

    Article  CAS  PubMed  Google Scholar 

  12. Fichtlscherer S, De Rosa S, Fox H, Schwietz T et al (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107:677–684. https://doi.org/10.1161/CIRCRESAHA.109.215566

    Article  CAS  PubMed  Google Scholar 

  13. Fish JE, Santoro MM, Morton SU, Yu S et al (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15:272–284. https://doi.org/10.1016/j.devcel.2008.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fourdinier O, Schepers E, Metzinger-Le Meuth V, Glorieux G et al (2019) Serum levels of miR-126 and miR-223 and outcomes in chronic kidney disease patients. Sci Rep 9:4477. https://doi.org/10.1038/s41598-019-41101-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fujii R, Yamada H, Yamazaki M, Munetsuna E et al (2019) Circulating microRNAs (miR-126, miR-197, and miR-223) are associated with chronic kidney disease among elderly survivors of the Great East Japan Earthquake. BMC Nephrol 20:474. https://doi.org/10.1186/s12882-019-1651-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gao J, Yang S, Wang K, Zhong Q et al (2019) Plasma miR-126 and miR-143 as Potential Novel Biomarkers for Cerebral Atherosclerosis. J Stroke Cerebrovasc Dis: Off J Natl Stroke Assoc 28:38–43. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.09.008

    Article  Google Scholar 

  17. Gao S, Gao H, Dai L, Han Y et al (2021) miR-126 regulates angiogenesis in myocardial ischemia by targeting HIF-1α. Exp Cell Res 409:112925. https://doi.org/10.1016/j.yexcr.2021.112925

    Article  CAS  PubMed  Google Scholar 

  18. Goerke SM, Kiefer LS, Stark GB, Simunovic F et al (2015) miR-126 modulates angiogenic growth parameters of peripheral blood endothelial progenitor cells. Biol Chem 396:245–252. https://doi.org/10.1515/hsz-2014-0259

    Article  CAS  PubMed  Google Scholar 

  19. Harris TA, Yamakuchi M, Ferlito M, Mendell JT et al (2008) MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA 105:1516–1521. https://doi.org/10.1073/pnas.0707493105

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hsu A, Chen S-J, Chang Y-S, Chen H-C et al (2014) Systemic approach to identify serum microRNAs as potential biomarkers for acute myocardial infarction. Biomed Res Int 2014:418628. https://doi.org/10.1155/2014/418628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang J-H, Xu Y, Yin X-M, Lin F-Y (2020) Exosomes Derived from miR-126-modified MSCs Promote Angiogenesis and Neurogenesis and Attenuate Apoptosis after Spinal Cord Injury in Rats. Neuroscience 424:133–145. https://doi.org/10.1016/j.neuroscience.2019.10.043

    Article  CAS  PubMed  Google Scholar 

  22. Huang B, Wu G, Peng C, Peng X et al (2023) miR-126 regulates the proliferation, migration, invasion, and apoptosis of non-small lung cancer cells via AKT2/HK2 axis. IUBMB Life 75:186–195. https://doi.org/10.1002/iub.2531

    Article  CAS  PubMed  Google Scholar 

  23. Jia Z, Zhang Y, Xu Q, Guo W et al (2018) miR-126 suppresses epithelial-to-mesenchymal transition and metastasis by targeting PI3K/AKT/Snail signaling of lung cancer cells. Oncol Lett 15:7369–7375. https://doi.org/10.3892/ol.2018.8207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jiang L, Tao C, He A, He X (2014) Overexpression of miR-126 sensitizes osteosarcoma cells to apoptosis induced by epigallocatechin-3-gallate. World J Surg Oncol 12:383. https://doi.org/10.1186/1477-7819-12-383

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kim W, Lee Y, Mckenna ND, Yi M et al (2014) miR-126 contributes to Parkinson’s disease by dysregulating the insulin-like growth factor/phosphoinositide 3-kinase signaling. Neurobiol Aging 35:1712–1721. https://doi.org/10.1016/j.neurobiolaging.2014.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kong F, Zhou J, Zhou W, Guo Y et al (2017) Protective role of microRNA-126 in intracerebral hemorrhage. Mol Med Rep 15:1419–1425. https://doi.org/10.3892/mmr.2017.6134

    Article  CAS  PubMed  Google Scholar 

  27. Kuhnert F, Mancuso MR, Hampton J, Stankunas K et al (2008) Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development (Cambridge, England) 135:3989–3993. https://doi.org/10.1242/dev.029736

    Article  CAS  PubMed  Google Scholar 

  28. Li F (2019) Expression and correlation of miR-124 and miR-126 in breast cancer. Oncol Lett 17:5115–5119. https://doi.org/10.3892/ol.2019.10184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li J, Yang C, Wang Y (2021) miR‑126 overexpression attenuates oxygen‑glucose deprivation/reperfusion injury by inhibiting oxidative stress and inflammatory response via the activation of SIRT1/Nrf2 signaling pathway in human umbilical vein endothelial cells. Mol Med Rep 23. https://doi.org/10.3892/mmr.2020.11804

  30. Li Q, Wang G, Wang H (2018) miR-126 Functions as a Tumor Suppressor by Targeting SRPK1 in Human Gastric Cancer. Oncol Res 26:1345–1353. https://doi.org/10.3727/096504018X15180508535835

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li M, Wang Q, Zhang X, Yan N et al (2020) Exosomal miR-126 blocks the development of non-small cell lung cancer through the inhibition of ITGA6. Cancer Cell Int 20:574. https://doi.org/10.1186/s12935-020-01653-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li M, Meng X, Li M (2020) MiR-126 promotes esophageal squamous cell carcinoma via inhibition of apoptosis and autophagy. Aging 12:12107–12118. https://doi.org/10.18632/aging.103379

  33. Li X, Xiong W, Long X, Dai X et al (2021) Inhibition of METTL3/m6A/miR126 promotes the migration and invasion of endometrial stromal cells in endometriosis†. Biol Reprod 105:1221–1233. https://doi.org/10.1093/biolre/ioab152

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lidong D, Zhanghong X, Huawu M, Xiaofang H et al (2021) Ischemia Modified Albumin and miR-126 Play Important Role in Diagnosis of Posterior Circulation Transient Ischemic Attack and Prediction of Secondary Cerebral Infarction. Neurol India 69:75–80. https://doi.org/10.4103/0028-3886.310100

    Article  PubMed  Google Scholar 

  35. Liu T, Fan HW, Lu S, Wang SQ et al (2018) MiR-126 induces myeloma cell line Karpas707 apoptosis by downregulating anti-apoptotic protein MCL. Eur Rev Med Pharmacol Sci 22:6873–6879. https://doi.org/10.26355/eurrev_201810_16156

    Article  CAS  PubMed  Google Scholar 

  36. Liu R, Liu CM, Cui LL, Zhou L et al (2019) Expression and significance of MiR-126 and VEGF in proliferative diabetic retinopathy. Eur Rev Med Pharmacol Sci 23:6387–6393. https://doi.org/10.26355/eurrev_201908_18518

  37. Liu L, Yuan L, Huang D, Han Q et al (2020) miR-126 regulates the progression of epithelial ovarian cancer in vitro and in vivo by targeting VEGF-A. Int J Oncol 57:825–834. https://doi.org/10.3892/ijo.2020.5082

    Article  CAS  PubMed  Google Scholar 

  38. Liu Y, Mo C, Mao X, Lu M et al (2022) Increasing miR-126 Can Prevent Brain Injury after Intracerebral Hemorrhage in Rats by Regulating ZEB1. Contrast Media Mol Imaging 2022:2698773. https://doi.org/10.1155/2022/2698773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Long G, Wang F, Li H, Yin Z et al (2013) Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. BMC Neurol 13:178. https://doi.org/10.1186/1471-2377-13-178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lou Z, Li Q, Wang C, Li Y (2022) The effects of microRNA-126 reduced inflammation and apoptosis of diabetic nephropathy through PI3K/AKT signalling pathway by VEGF. Arch Physiol Biochem 128:1265–1274. https://doi.org/10.1080/13813455.2020.1767146

    Article  CAS  PubMed  Google Scholar 

  41. Ma J, Zhang Z, Wang Y, Shen H (2022) Investigation of miR-126-3p loaded on adipose stem cell-derived exosomes for wound healing of full-thickness skin defects. Exp Dermatol 31:362–374. https://doi.org/10.1111/exd.14480

    Article  CAS  PubMed  Google Scholar 

  42. Mao X, Wu Y, Xu W (2023) miR-126-5p expression in the plasma of patients with sepsis-induced acute lung injury and its correlation with inflammation and immune function. Clin Respir J 17:629–637. https://doi.org/10.1111/crj.13646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mazzeo A, Beltramo E, Iavello A, Carpanetto A et al (2015) Molecular mechanisms of extracellular vesicle-induced vessel destabilization in diabetic retinopathy. Acta Diabetol 52:1113–1119. https://doi.org/10.1007/s00592-015-0798-9

    Article  CAS  PubMed  Google Scholar 

  44. Mishra S, Rizvi A, Pradhan A, Perrone MA et al (2021) Circulating microRNA-126 & 122 in patients with coronary artery disease: Correlation with small dense LDL. Prostaglandins Other Lipid Mediat 153:106536. https://doi.org/10.1016/j.prostaglandins.2021.106536

    Article  CAS  PubMed  Google Scholar 

  45. Moutinho C, Esteller M (2017) MicroRNAs and Epigenetics. Adv Cancer Res 135:189–220. https://doi.org/10.1016/bs.acr.2017.06.003

    Article  CAS  PubMed  Google Scholar 

  46. Nong A, Li Q, Huang Z, Xu Y et al (2021) MicroRNA miR-126 attenuates brain injury in septic rats via NF-κB signaling pathway. Bioengineered 12:2639–2648. https://doi.org/10.1080/21655979.2021.1937905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Oglesby IK, Bray IM, Chotirmall SH, Stallings RL et al (2010) miR-126 is downregulated in cystic fibrosis airway epithelial cells and regulates TOM1 expression. J Immunol (Baltimore, Md. : 1950) 184:1702–1709. https://doi.org/10.4049/jimmunol.0902669

  48. Osella M, Riba A, Testori A, Corà D et al (2014) Interplay of microRNA and epigenetic regulation in the human regulatory network. Front Genet 5:345. https://doi.org/10.3389/fgene.2014.00345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Otsubo T, Akiyama Y, Hashimoto Y, Shimada S et al (2011) MicroRNA-126 inhibits SOX2 expression and contributes to gastric carcinogenesis. PLoS ONE 6:e16617. https://doi.org/10.1371/journal.pone.0016617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pan J, Qu M, Li Y, Wang L et al (2020) MicroRNA-126-3p/-5p Overexpression Attenuates Blood-Brain Barrier Disruption in a Mouse Model of Middle Cerebral Artery Occlusion. Stroke 51:619–627. https://doi.org/10.1161/STROKEAHA.119.027531

    Article  CAS  PubMed  Google Scholar 

  51. Pan H, Yu M, Chen M, Wang X et al (2020) miR-126 suppresses neuronal apoptosis in rats after cardiopulmonary resuscitation via regulating p38MAPK. Hum Exp Toxicol 39:563–574. https://doi.org/10.1177/0960327119895561

    Article  CAS  PubMed  Google Scholar 

  52. Pardini B, De Maria D, Francavilla A, Di Gaetano C et al (2018) MicroRNAs as markers of progression in cervical cancer: a systematic review. BMC Cancer 18:696. https://doi.org/10.1186/s12885-018-4590-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Png KJ, Halberg N, Yoshida M, Tavazoie SF (2011) A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature 481:190–194. https://doi.org/10.1038/nature10661

    Article  CAS  PubMed  Google Scholar 

  54. Qi R, Liu H, Liu C, Xu Y et al (2020) Expression and short-term prognostic value of miR-126 and miR-182 in patients with acute stroke. Exp Ther Med 19:527–534. https://doi.org/10.3892/etm.2019.8227

    Article  CAS  PubMed  Google Scholar 

  55. Ren G, Kang Y (2013) A one-two punch of miR-126/126* against metastasis. Nat Cell Biol 15:231–233. https://doi.org/10.1038/ncb2703

    Article  CAS  PubMed  Google Scholar 

  56. Ren Y, Bao R, Guo Z, Kai J et al (2021) miR-126-5p regulates H9c2 cell proliferation and apoptosis under hypoxic conditions by targeting IL-17A. Exp Ther Med 21:67. https://doi.org/10.3892/etm.2020.9499

    Article  CAS  PubMed  Google Scholar 

  57. Sanguineti R, Puddu A, Nicolò M, Traverso CE et al (2021) miR-126 Mimic Counteracts the Increased Secretion of VEGF-A Induced by High Glucose in ARPE-19 Cells. J Diabetes Res 2021:6649222. https://doi.org/10.1155/2021/6649222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shaito A, Aramouni K, Assaf R, Parenti A et al (2022) Oxidative Stress-Induced Endothelial Dysfunction in Cardiovascular Diseases. Front Biosci (Landmark Edition) 27:105. https://doi.org/10.31083/j.fbl2703105

  59. Schwesinger C, Yee C, Rohan RM, Joussen AM et al (2001) Intrachoroidal neovascularization in transgenic mice overexpressing vascular endothelial growth factor in the retinal pigment epithelium. Am J Pathol 158:1161–1172. https://doi.org/10.1016/S0002-9440(10)64063-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sheikh MSA, Almaeen A, Alduraywish A, Alomair BM et al (2022) Overexpression of miR-126 Protects Hypoxic-Reoxygenation-Exposed HUVEC Cellular Injury through Regulating LRP6 Expression. Oxid Med Cell Longev 2022:3647744. https://doi.org/10.1155/2022/3647744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shen G, Sun Q, Yao Y, Li S et al (2020) Role of ADAM9 and miR-126 in the development of abdominal aortic aneurysm. Atherosclerosis 297:47–54. https://doi.org/10.1016/j.atherosclerosis.2020.01.014

    Article  CAS  PubMed  Google Scholar 

  62. Shi CC, Pan LY, Peng ZY, Li JG (2020) MiR-126 regulated myocardial autophagy on myocardial infarction. Eur Rev Med Pharmacol Sci 24:6971–6979. https://doi.org/10.26355/eurrev_202006_21689

    Article  PubMed  Google Scholar 

  63. Shi X, Ma W, Pan Y, Li Y et al (2020) MiR-126–5p promotes contractile switching of aortic smooth muscle cells by targeting VEPH1 and alleviates Ang II-induced abdominal aortic aneurysm in mice. Lab Investig; J Tech Methods Pathol 100:1564–1574. https://doi.org/10.1038/s41374-020-0454-z

  64. Song L, Li D, Gu Y, Wen Z-M et al (2016) MicroRNA-126 Targeting PIK3R2 Inhibits NSCLC A549 Cell Proliferation, Migration, and Invasion by Regulation of PTEN/PI3K/AKT Pathway. Clin Lung Cancer 17:e65–e75. https://doi.org/10.1016/j.cllc.2016.03.012

    Article  CAS  PubMed  Google Scholar 

  65. Su J, Ding L (2021) Upregulation of miR‑126 inhibits podocyte injury in sepsis via EGFL6/DKC1 signaling pathway. Mol Med Rep 23. https://doi.org/10.3892/mmr.2021.12012

  66. Sun Y-Q, Zhang F, Bai Y-F, Guo L-L (2010) [miR-126 modulates the expression of epidermal growth factor-like domain 7 in human umbilical vein endothelial cells in vitro]. Nan Fang Yi Ke Da Xue Xue Bao = J South Med Univ 30:767–770.

  67. Sun Z, Liu F, Cai X, Yu W et al (2021) MiR-126 affects femoral fracture healing in rats through PI3K/AKT signaling pathway. Panminerva Med 63:89–90. https://doi.org/10.23736/S0031-0808.19.03669-3

    Article  PubMed  Google Scholar 

  68. Sun Z, Zhao X, Zhang M, Li N et al (2022) MicroRNA‑126 protects SH‑SY5Y cells from ischemia/reperfusion injury‑induced apoptosis by inhibiting RAB3IP. Mol Med Rep 25. https://doi.org/10.3892/mmr.2021.12578

  69. Tang S-T, Wang F, Shao M, Wang Y et al (2017) MicroRNA-126 suppresses inflammation in endothelial cells under hyperglycemic condition by targeting HMGB1. Vascul Pharmacol 88:48–55. https://doi.org/10.1016/j.vph.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  70. Tomasetti M, Nocchi L, Staffolani S, Manzella N et al (2014) MicroRNA-126 suppresses mesothelioma malignancy by targeting IRS1 and interfering with the mitochondrial function. Antioxid Redox Signal 21:2109–2125. https://doi.org/10.1089/ars.2013.5215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Van Solingen C, Seghers L, Bijkerk R, Duijs JMGJ et al (2009) Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med 13:1577–1585. https://doi.org/10.1111/j.1582-4934.2008.00613.x

    Article  CAS  PubMed  Google Scholar 

  72. Venkat P, Cui C, Chopp M, Zacharek A et al (2019) MiR-126 Mediates Brain Endothelial Cell Exosome Treatment-Induced Neurorestorative Effects After Stroke in Type 2 Diabetes Mellitus Mice. Stroke 50:2865–2874. https://doi.org/10.1161/STROKEAHA.119.025371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wagschal A, Najafi-Shoushtari SH, Wang L, Goedeke L et al (2015) Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. Nat Med 21:1290–1297. https://doi.org/10.1038/nm.3980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang S, Aurora AB, Johnson BA, Qi X et al (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15:261–271. https://doi.org/10.1016/j.devcel.2008.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang J-N, Yan Y-Y, Guo Z-Y, Jiang Y-J et al (2016) Negative Association of Circulating MicroRNA-126 with High-sensitive C-reactive Protein and Vascular Cell Adhesion Molecule-1 in Patients with Coronary Artery Disease Following Percutaneous Coronary Intervention. Chin Med J 129:2786–2791. https://doi.org/10.4103/0366-6999.194645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang C, Zhou B, Liu M, Liu Y et al (2017) miR-126-5p Restoration Promotes Cell Apoptosis in Cervical Cancer by Targeting Bcl2l2. Oncol Res 25:463–470. https://doi.org/10.3727/096504016X14685034103879

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wang H, Wang G, Tian WL (2019) MiR-126 inhibits the proliferation and invasion of gastric cancer by downregulation of IGF-1R. Zhonghua Zhong Liu Za Zhi [Chin J Oncol] 41:508–515. https://doi.org/10.3760/cma.j.issn.0253-3766.2019.07.005

    Article  CAS  PubMed  Google Scholar 

  78. Wang L, Wang HN, Zu XL (2019) Relationship between plasma miR-126 and coronary slow flow phenomenon. Zhonghua Yi Xue Za Zhi 99:1323–1327. https://doi.org/10.3760/cma.j.issn.0376-2491.2019.17.010

    Article  CAS  PubMed  Google Scholar 

  79. Wang W, Zheng Y, Wang M, Yan M et al (2019) Exosomes derived miR-126 attenuates oxidative stress and apoptosis from ischemia and reperfusion injury by targeting ERRFI1. Gene 690:75–80. https://doi.org/10.1016/j.gene.2018.12.044

    Article  CAS  PubMed  Google Scholar 

  80. Wang J, Chen S, Zhang W, Chen Y et al (2020) Exosomes from miRNA-126-modified endothelial progenitor cells alleviate brain injury and promote functional recovery after stroke. CNS Neurosci Ther 26:1255–1265. https://doi.org/10.1111/cns.13455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang LJ, Wang XZ, Li ZM, Kou D et al (2020) MiR-126 facilitates apoptosis of retinal ganglion cells in glaucoma rats via VEGF-Notch signaling pathway. Eur Rev Med Pharmacol Sci 24:8635–8641. https://doi.org/10.26355/eurrev_202009_22800

    Article  PubMed  Google Scholar 

  82. Wang L, Lee AYW, Wigg JP, Peshavariya H et al (2016) miR-126 Regulation of Angiogenesis in Age-Related Macular Degeneration in CNV Mouse Model. Int J Mol Sci 17. https://doi.org/10.3390/ijms17060895

  83. Wei XJ, Han M, Yang FY, Wei GC et al (2015) Biological significance of miR-126 expression in atrial fibrillation and heart failure. Braz J Med Biol Res = Rev Bras Pesquisas Med Biol 48:983–989. https://doi.org/10.1590/1414-431X20154590

  84. Xiang G, Cheng Y (2018) MiR-126-3p inhibits ovarian cancer proliferation and invasion via targeting PLXNB2. Reprod Biol 18:218–224. https://doi.org/10.1016/j.repbio.2018.07.005

    Article  PubMed  Google Scholar 

  85. Xiao ZH, Wang L, Gan P, He J et al (2020) Dynamic Changes in miR-126 Expression in the Hippocampus and Penumbra Following Experimental Transient Global and Focal Cerebral Ischemia-Reperfusion. Neurochem Res 45:1107–1119. https://doi.org/10.1007/s11064-020-02986-4

    Article  CAS  PubMed  Google Scholar 

  86. Xue B, Qu Y, Zhang X, Xu X-F (2022) miRNA-126a-3p participates in hippocampal memory via alzheimer's disease-related proteins. Cereb Cortex (New York, N.Y. : 1991) 32:4763–4781. https://doi.org/10.1093/cercor/bhab515

  87. Xu J-Q, Liu P, Si M-J, Ding X-Y (2013) MicroRNA-126 inhibits osteosarcoma cells proliferation by targeting Sirt1. Tumour Biol: J Int Soc Oncodevelopmental Biol Med 34:3871–3877. https://doi.org/10.1007/s13277-013-0974-x

    Article  CAS  Google Scholar 

  88. Xu Y, Xu W, Lu T, Dai Y et al (2017) miR-126 affects the invasion and migration of glioma cells through GATA4. Artif Cells Nanomed Biotechnol 45:1–7. https://doi.org/10.1080/21691401.2016.1226179

    Article  CAS  PubMed  Google Scholar 

  89. Xu J, Wang H, Wang H, Chen Q et al (2019) The inhibition of miR-126 in cell migration and invasion of cervical cancer through regulating ZEB1. Hereditas 156:11. https://doi.org/10.1186/s41065-019-0087-7

    Article  PubMed  PubMed Central  Google Scholar 

  90. Yu P, Venkat P, Chopp M, Zacharek A et al (2019) Role of microRNA-126 in vascular cognitive impairment in mice. J Cereb Blood Flow Metab: Off J Int Soc Cereb Blood Flow Metab 39:2497–2511. https://doi.org/10.1177/0271678X18800593

    Article  CAS  Google Scholar 

  91. Zampetaki A, Kiechl S, Drozdov I, Willeit P et al (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107:810–817. https://doi.org/10.1161/CIRCRESAHA.110.226357

    Article  CAS  PubMed  Google Scholar 

  92. Zhao S, Wang Y, Liang Y, Zhao M et al (2011) MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum 63:1376–1386. https://doi.org/10.1002/art.30196

    Article  CAS  PubMed  Google Scholar 

  93. Zhao C, Li Y, Zhang M, Yang Y et al (2015) miR-126 inhibits cell proliferation and induces cell apoptosis of hepatocellular carcinoma cells partially by targeting Sox2. Hum Cell 28:91–99. https://doi.org/10.1007/s13577-014-0105-z

    Article  CAS  PubMed  Google Scholar 

  94. Zhou J, Li Y-S, Nguyen P, Wang K-C et al (2013) Regulation of vascular smooth muscle cell turnover by endothelial cell-secreted microRNA-126: role of shear stress. Circ Res 113:40–51. https://doi.org/10.1161/CIRCRESAHA.113.280883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhu X, Li H, Long L, Hui L et al (2012) miR-126 enhances the sensitivity of non-small cell lung cancer cells to anticancer agents by targeting vascular endothelial growth factor A. Acta Biochim Biophys Sin 44:519–526. https://doi.org/10.1093/abbs/gms026

    Article  CAS  PubMed  Google Scholar 

  96. Zhu Y, Han Y, Tian T, Su P et al (2018) MiR-21-5p, miR-34a, and human telomerase RNA component as surrogate markers for cervical cancer progression. Pathol Res Pract 214:374–379. https://doi.org/10.1016/j.prp.2018.01.001

    Article  CAS  PubMed  Google Scholar 

  97. Zou Q, Yang M, Yu M, Liu C (2020) Influences of Regulation of miR-126 on Inflammation, Th17/Treg Subpopulation Differentiation, and Lymphocyte Apoptosis through Caspase Signaling Pathway in Sepsis. Inflammation 43:2287–2300. https://doi.org/10.1007/s10753-020-01298-7

    Article  CAS  PubMed  Google Scholar 

  98. Zou Q, Liu C, Hu N, Wang W et al (2022) miR-126 ameliorates multiple organ dysfunction in septic rats by regulating the differentiation of Th17/Treg. Mol Biol Rep 49:2985–2998. https://doi.org/10.1007/s11033-022-07121-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Dear Editor, The “potential human face” detected by the initial technical check in the manuscript is hand-drawn portrait and is not real human beings. Therefore, no personal likeness or privacy rights are involved. I understand and accept that the image may be used for academic and educational purposes and published in your journal. Please feel free to contact me if there are any further questions or requests. Best wishes. Sincerely yours, Liao Li, et al. 4th, December, 2023

Funding

The study was supported by the Chengdu Medical Research Project (NO.2022655), the Sichuan Provincial Medical Youth Innovation Research Project (NO.Q20027), and the Sichuan Hospital Association Young Pharmacist Research Special Fund Project (NO.22047).

Author information

Authors and Affiliations

Authors

Contributions

Li Liao and Xiaochun Zhang conceived and designed the manuscript. Li Liao wrote the manuscript. Yan Tang, Yanping Zhou, Xianglin Meng and Bo Li participated in revising and drawing the manuscript. Yan Tang and Xiaochun Zhang provided critical revision of the manuscript for important intellectual content and language editing. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Li Liao or Xiaochun Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, L., Tang, Y., Zhou, Y. et al. MicroRNA-126 (MiR-126): key roles in related diseases. J Physiol Biochem (2024). https://doi.org/10.1007/s13105-024-01017-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13105-024-01017-y

Keywords

Navigation