Skip to main content

Advertisement

Log in

Targets and regulation of microRNA-652-3p in homoeostasis and disease

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

microRNA are small non-coding RNA molecules which inhibit gene expression by binding mRNA, preventing its translation. As important regulators of gene expression, there is increasing interest in microRNAs as potential diagnostic biomarkers and therapeutic targets. Studies investigating the role of one of the miRNA—miR-652-3p—detail diverse roles for this miRNA in normal cell homoeostasis and disease states, including cancers, cardiovascular disease, mental health, and central nervous system diseases. Here, we review recent literature surrounding miR-652-3p, discussing its known target genes and their relevance to disease progression. These studies demonstrate that miR-652-3p targets LLGL1 and ZEB1 to modulate cell polarity mechanisms, with impacts on cancer metastasis and asymmetric cell division. Inhibition of the NOTCH ligand JAG1 by miR-652-3p can have diverse effects on angiogenesis and immune cell regulation. Investigation of miR-652-3p and other dysregulated miRNAs identified a number of pathways potentially regulated by miR-652-3p. This review demonstrates that miR-652-3p has great promise as a diagnostic or therapeutic target due to its activity across multiple cellular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable

References

  1. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403(6772):901–906

    Article  CAS  PubMed  Google Scholar 

  2. Ambros V (2004) The functions of animal microRNAs. Nature 431(7006):350–355

    Article  CAS  PubMed  Google Scholar 

  3. Dai R, Ahmed SA (2011) MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl Res 157(4):163–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shi ZY, Liu B, Li YC, Liu FF, Yuan XH, Wang YQ (2019) MicroRNA-652-3p promotes the proliferation and invasion of the trophoblast HTR-8/SVneo cell line by targeting homeobox A9 to modulate the expression of ephrin receptor B4. Clin Exp Pharmacol Physiol 46(6):587–596

    Article  CAS  PubMed  Google Scholar 

  5. Wang B, Lv F, Zhao L, Yang K, Gao YS, Du MJ, Zhang YJ (2017) MicroRNA-652 inhibits proliferation and induces apoptosis of non-small cell lung cancer A549 cells. Int J Clin Exp Pathol 10(6):6719–6726

    Google Scholar 

  6. Zhu QL, Zhan DM, Chong YK, Ding L, Yang YG (2019) MiR-652-3p promotes bladder cancer migration and invasion by targeting KCNN3. Eur Rev Med Pharmacol Sci 23(20):8806–8812

    PubMed  Google Scholar 

  7. Yang WH, Zhou CC, Luo M, Shi XJ, Li Y, Sun ZM, Zhou F, Chen ZL, He J (2016) MiR-652-3p is upregulated in non-small cell lung cancer and promotes proliferation and metastasis by directly targeting Lgl1. Oncotarget 7(13):16703–16715

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bonneau E, Neveu B, Kostantin E, Tsongalis GJ, De Guire V (2019) How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC 30(2):114–127

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hanna J, Hossein GS, Kocerha J (2019) The potential for microRNA therapeutics and clinical research. Front Genet 10. https://doi.org/10.3389/fgene.2019.00478

  10. Cummins JM, He YP, Leary RJ, Pagliarini R, Diaz LA, Sjoblom T, Barad O, Bentwich Z, Szafranska AE, Labourier E et al (2006) The colorectal microRNAome. Proc Natl Acad Sci U S A 103(10):3687–3692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P et al (2004) The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res 14(10B):2121–2127

    Article  PubMed  Google Scholar 

  12. de Rie D, Abugessaisa I, Alam T, Arner E, Arner P, Ashoor H, Astrom G, Babina M, Bertin N, Burroughs AM et al (2017) An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol 35(9):872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448(7149):83–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ramsingh G, Koboldt DC, Trissal M, Chiappinelli KB, Wylie T, Koul S, Chang LW, Nagarajan R, Fehniger TA, Goodfellow P et al (2010) Complete characterization of the microRNAome in a patient with acute myeloid leukemia. Blood 116(24):5316–5326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ji FJ, Wu YY, An Z, Liu XS, Jiang JN, Chen FF, Fang XD (2017) Expression of both poly r(C) binding protein 1 (PCBP1) and miRNA-3978 is suppressed in peritoneal gastric cancer metastasis. Sci Rep 7. https://doi.org/10.1038/s41598-017-15448-9

  16. Allantaz F, Cheng DT, Bergauer T, Ravindran P, Rossier MF, Ebeling M, Badi L, Reis B, Bitter H, D'Asaro M et al (2012) Expression profiling of human immune cell subsets identifies miRNA-mRNA regulatory relationships correlated with cell type specific expression. PLoS One 7(1):e29979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Meng QL, Liu F, Yang XY, Liu XM, Zhang X, Zhang C, Zhang ZD (2014) Identification of latent tuberculosis infection-related microRNAs in human U937 macrophages expressing Mycobacterium tuberculosis Hsp16.3. BMC Microbiol 14:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Roderburg C, Mollnow T, Bongaerts B, Elfimova N, Cardenas DV, Berger K, Zimmermann H, Koch A, Vucur M, Luedde M et al (2012) Micro-RNA profiling in human serum reveals compartment-specific roles of miR-571 and miR-652 in liver cirrhosis. PLoS One 7(3). https://doi.org/10.1371/journal.pone.0032999

  19. Xuan J, Guo SL, Huang A, Xu HB, Shao M, Yang Y, Wen W (2017) miR-29a and miR-652 attenuate liver fibrosis by inhibiting the differentiation of CD4+T cells. Cell Struct Funct 42(2):95–103

    Article  PubMed  Google Scholar 

  20. Deng SC, Li X, Niu Y, Zhu S, Jin Y, Deng SJ, Chen JY, Liu Y, He C, Yin T et al (2015) MiR-652 inhibits acidic microenvironment-induced epithelial-mesenchymal transition of pancreatic cancer cells by targeting ZEB1. Oncotarget 6(37):39661–39675

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sun XM, Dongol S, Qiu CP, Xu Y, Sun CG, Zhang ZW, Yang XS, Zhang Q, Kong BH (2018) miR-652 promotes tumor proliferation and metastasis by targeting RORA in endometrial cancer. Mol Cancer Res 16(12):1927–1939

    Article  CAS  PubMed  Google Scholar 

  22. Cheng L, Sun X, Scicluna BJ, Coleman BM, Hill AF (2014) Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine. Kidney Int 86(2):433–444

    Article  CAS  PubMed  Google Scholar 

  23. Pergoli L, Cantone L, Favero C, Angelici L, Iodice S, Pinatel E, Hoxha M, Dioni L, Letizia M, Albetti B et al (2017) Extracellular vesicle-packaged miRNA release after short-term exposure to particulate matter is associated with increased coagulation. Part Fibre Toxicol 14:13

    Article  CAS  Google Scholar 

  24. Barry SE, Ellis M, Yang YR, Guan GY, Wang XL, Britton WJ, Saunders BM (2018) Identification of a plasma microRNA profile in untreated pulmonary tuberculosis patients that is modulated by anti-mycobacterial therapy. J Inf Secur 77(4):341–348

    Google Scholar 

  25. Bruno N, ter Maaten JM, Ovchinnikova ES, Vegter EL, Valente MAE, van der Meer P, de Boer RA, van der Harst P, Schmitter D, Metra M et al (2016) MicroRNAs relate to early worsening of renal function in patients with acute heart failure. Int J Cardiol 203:564–569

    Article  PubMed  Google Scholar 

  26. Carreras-Badosa G, Bonmati A, Ortega FJ, Mercader JM, Guindo-Martinez M, Torrents D, Prats-Puig A, Martinez-Calcerrada JM, Platero-Gutierrez E, De Zegher F et al (2015) Altered circulating miRNA expression profile in pregestational and gestational obesity. J Clin Endocrinol Metab 100(11):E1446–E1456

    Article  CAS  PubMed  Google Scholar 

  27. Fernandez-Costa JM, Llamusi B, Bargiela A, Zulaica M, Alvarez-Abril MC, Perez-Alonso M, de Munain AL, Lopez-Castel A, Artero R (2016) Six serum miRNAs fail to validate as myotonic dystrophy type 1 biomarkers. PLoS One 11(2):13

    Article  CAS  Google Scholar 

  28. Ji DB, Qiao M, Yao YF, Li M, Chen HL, Dong Q, Jia JY, Cui XX, Li ZW, Xia JH et al (2018) Serum-based microRNA signature predicts relapse and therapeutic outcome of adjuvant chemotherapy in colorectal cancer patients. Ebiomedicine 35:189–197

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sahlberg KK, Bottai G, Naume B, Burwinkel B, Calin GA, Borresen-Dale AL, Santarpia L (2015) A serum microRNA signature predicts tumor relapse and survival in triple-negative breast cancer patients. Clin Cancer Res 21(5):1207–1214

    Article  CAS  Google Scholar 

  30. Zhou CC, Chen ZL, Dong JS, Li JG, Shi XJ, Sun N, Luo M, Zhou F, Tan FW, He J (2015) Combination of serum miRNAs with Cyfra21-1 for the diagnosis of non-small cell lung cancer. Cancer Lett 367(2):138–146

    Article  CAS  PubMed  Google Scholar 

  31. Gaedcke J, Grade M, Camps J, Sokilde R, Kaczkowski B, Schetter AJ, Difilippantonio MJ, Harris CC, Ghadimi BM, Moller S et al (2012) The rectal cancer microRNAome - microRNA expression in rectal cancer and matched normal mucosa. Clin Cancer Res 18(18):4919–4930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Matsui D, Zaidi AH, Martin SA, Omstead AN, Kosovec JE, Huleihel L, Saldin LT, DiCarlo C, Silverman JF, Hoppo T et al (2016) Primary tumor microRNA signature predicts recurrence and survival in patients with locally advanced esophageal adenocarcinoma. Oncotarget 7(49):81281–81291

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vestergaard AL, Bang-Berthelsen CH, Floyel T, Stahl JL, Christen L, Sotudeh FT, Horskjaer PD, Frederiksen KS, Kofod FG, Bruun C et al (2018) MicroRNAs and histone deacetylase inhibition-mediated protection against inflammatory beta-cell damage. PLoS One 13(9):22

    Google Scholar 

  34. Zuo ML, Wang AP, Song GL, Yang ZB (2020) miR-652 protects rats from cerebral ischemia/reperfusion oxidative stress injury by directly targeting NOX2. Biomed Pharmacother 124. https://doi.org/10.1016/j.biopha.2020.109860

  35. Zurawek M, Dzikiewicz-Krawczyk A, Izykowska K, Ziolkowska-Suchanek I, Skowronska B, Czainska M, Podralska M, Fichna P, Przybylski G, Fichna M et al (2018) miR-487a-3p upregulated in type 1 diabetes targets CTLA4 and FOXO3. Diabetes Res Clin Pract 142:146–153

    Article  CAS  PubMed  Google Scholar 

  36. Meijer HA, Smith EM, Bushell M (2014) Regulation of miRNA strand selection: follow the leader? Biochem Soc Trans 42:1135–1140

    Article  CAS  PubMed  Google Scholar 

  37. Mensah GA, Roth GA, Fuster V (2019) The global burden of cardiovascular diseases and risk factors. J Am Coll Cardiol 74:2529–2532

    Article  PubMed  Google Scholar 

  38. Pilbrow AP, Cordeddu L, Cameron VA, Frampton CM, Troughton RW, Doughty RN, Whalley GA, Ellis CJ, Yandle TG, Richards AM et al (2014) Circulating miR-323-3p and miR-652: candidate markers for the presence and progression of acute coronary syndromes. Int J Cardiol 176(2):375–385

    Article  PubMed  Google Scholar 

  39. Ovchinnikova ES, Schmitter D, Vegter EL, ter Maaten JM, Valente MAE, Liu LCY, van der Harst P, Pinto YM, de Boer RA, Meyer S et al (2016) Signature of circulating microRNAs in patients with acute heart failure. Eur J Heart Fail 18(4):414–423

    Article  CAS  PubMed  Google Scholar 

  40. Vegter EL, Ovchinnikova ES, van Veldhuisen DJ, Jaarsma T, Berezikov E, van der Meer P, Voors AA (2017) Low circulating microRNA levels in heart failure patients are associated with atherosclerotic disease and cardiovascular-related rehospitalizations. Clin Res Cardiol 106(8):598–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Vegter EL, Ovchinnikova ES, Sillje HHW, Meems LMG, van der Pol A, van der Velde AR, Berezikov E, Voors AA, de Boer RA, van der Meer P (2017) Rodent heart failure models do not reflect the human circulating microRNA signature in heart failure. PLoS One 12(5). https://doi.org/10.1371/journal.pone.0177242

  42. Liu JL, Zhang HM, Li X, Wang L, Yu HN, Huang JH, Liu QJ, Wang C, Jiang AL (2020) Diagnostic and prognostic significance of aberrant miR-652-3p levels in patients with acute decompensated heart failure and acute kidney injury. J Int Med Res 48(11):1–12

    Article  Google Scholar 

  43. Wang X, Sundquist K, Svensson PJ, Rastkhani H, Palmer K, Memon AA, Sundquist J, Zoller B (2019) Association of recurrent venous thromboembolism and circulating microRNAs. Clin Epigenetics 11. https://doi.org/10.1186/s13148-019-0627-z

  44. Nordstrom BL, Evans MA, Murphy BR, Nutescu EA, Schein JR, Bookhart BK (2015) Risk of recurrent venous thromboembolism among deep vein thrombosis and pulmonary embolism patients treated with warfarin. Curr Med Res Opin 31(3):439–447

    Article  CAS  PubMed  Google Scholar 

  45. Wang Y, Liu CX, Wei W, Chen WL (2020) Predictive value of circulating coagulation related microRNAs expressions for major adverse cardiac and cerebral event risk in patients undergoing continuous ambulatory peritoneal dialysis: a cohort study. J Nephrol 33(1):157–165

    Article  CAS  PubMed  Google Scholar 

  46. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR et al (2019) Heart disease and stroke statistics-2019 update a report from the American Heart Association. Circulation 139(10):E56–E528

    Article  PubMed  Google Scholar 

  47. Raggi P, Genest J, Giles JT, Rayner KJ, Dwivedi G, Beanlands RS, Gupta M (2018) Role of inflammation in the pathogenesis of atherosclerosis and therapeutic interventions. Atherosclerosis 276:98–108

    Article  CAS  PubMed  Google Scholar 

  48. Vromman A, Ruvkun V, Shvartz E, Wojtkiewicz G, Masson GS, Tesmenitsky Y, Folco E, Gram H, Nahrendorf M, Swirski FK et al (2019) Stage-dependent differential effects of interleukin-1 isoforms on experimental atherosclerosis. Eur Heart J 40(30):2482–2491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang RZ, Hu ZC, Cao Y, Li HR, Zhang H, Su WH, Xu Y, Liang LW, Melgiri ND, Jiang LH (2019) MiR-652-3p inhibition enhances endothelial repair and reduces atherosclerosis by promoting Cyclin D2 expression. Ebiomedicine 40:685–694

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhu WQ, Zhao M, Mattapally S, Chen SF, Zhang JY (2018) CCND2 overexpression enhances the regenerative potency of human induced pluripotent stem cell-derived cardiomyocytes: remuscularization of injured ventricle. Circ Res 122(1):88–96

    Article  CAS  PubMed  Google Scholar 

  51. Liang LW, Su WH, Zhou L, Cao Y, Zhou XL, Liu SQ, Zhao Y, Ding XX, Wang Q, Zhang H (2020) Statin downregulation of miR-652-3p protects dyslipidemia by promoting ISL1 expression endothelium from. Metab Clin Exp 107. https://doi.org/10.1016/j.metabol.2020.154226

  52. Li HG, Horke S, Forstermann U (2014) Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis 237(1):208–219

    Article  CAS  PubMed  Google Scholar 

  53. Huang PL, Huang ZH, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC (1995) Hypertension in mice lacking the gene for endothelial nitric-oxide synthase. Nature 377(6546):239–242

    Article  CAS  PubMed  Google Scholar 

  54. Kroll J, Waltenberger J (1998) VEGF-A induces expression of eNOS and iNOS in endothelial cells via VEGF receptor-2 (KDR). Biochem Biophys Res Commun 252(3):743–746

    Article  CAS  PubMed  Google Scholar 

  55. Bernardo BC, Nguyen SS, Winbanks CE, Gao XM, Boey EJH, Tham YK, Kiriazis H, Ooi JYY, Porrello ER, Igoor S et al (2014) Therapeutic silencing of miR-652 restores heart function and attenuates adverse remodeling in a setting of established pathological hypertrophy. FASEB J 28(12):5097–5110

    Article  CAS  PubMed  Google Scholar 

  56. Amsen D, Helbig C, Backer RA (2015) Notch in T cell differentiation: all things considered. Trends Immunol 36(12):802–814

    Article  CAS  PubMed  Google Scholar 

  57. Siebel C, Lendahl U (2017) Notch signaling in development, tissue homeostasis, and disease. Physiol Rev 97(4):1235–1294

    Article  CAS  PubMed  Google Scholar 

  58. MacGrogan D, Munch J, de la Pompa JL (2018) Notch and interacting signalling pathways in cardiac development, disease, and regeneration. Nat Rev Cardiol 15(11):685–704

    Article  PubMed  Google Scholar 

  59. Collesi C, Zentilin L, Sinagra G, Giacca M (2008) Notch1 signaling stimulates proliferation of immature cardiomyocytes. J Cell Biol 183(1):117–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Palaga T, Ratanabunyong S, Pattarakankul T, Sangphech N, Wongchana W, Hadae Y, Kueanjinda P (2013) Notch signaling regulates expression of Mcl-1 and apoptosis in PPD-treated macrophages. Cell Mol Immunol 10(5):444–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tondera D, Czauderna F, Paulick K, Schwarzer R, Kaufmann J, Santel A (2005) The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells. J Cell Sci 118(14):3049–3059

    Article  CAS  PubMed  Google Scholar 

  62. Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK, Stoudemire J, Smith S, Bader AG, Kim S, Hong DS (2017) Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Investig New Drugs 35(2):180–188

    Article  CAS  Google Scholar 

  63. Zhang L, Liao Y, Tang LL (2019) MicroRNA-34 family: a potential tumor suppressor and therapeutic candidate in cancer. J Exp Clin Cancer Res 38. https://doi.org/10.1186/s13046-019-1059-5

  64. Xia ZX, Yang CY, Yang XX, Wu SD, Feng ZZ, Qu L, Chen XH, Liu LY, Ma YL (2019) miR-652 promotes proliferation and migration of uveal melanoma cells by targeting HOXA9. Med Sci Monit 25:8722–8732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhen C, Huang JS, Lu JB (2019) MicroRNA-652 inhibits the biological characteristics of esophageal squamous cell carcinoma by directly targeting fibroblast growth factor receptor 1. Exp Ther Med 18(6):4473–4480

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Andersen M, Grauslund M, Ravn J, Sorensen JB, Andersen CB, Santoni-Rugiu E (2014) Diagnostic potential of miR-126, miR-143, miR-145, and miR-652 in malignant pleural mesothelioma. J Mol Diagn 16(4):418–430

    Article  CAS  PubMed  Google Scholar 

  67. Gao W, Shen H, Liu LX, Xu JA, Xu J, Shu YQ (2011) miR-21 overexpression in human primary squamous cell lung carcinoma is associated with poor patient prognosis. J Cancer Res Clin Oncol 137(4):557–566

    Article  CAS  PubMed  Google Scholar 

  68. Barry SE, Chan B, Ellis M, Yang YR, Plit ML, Guan GY, Wang XL, Britton WJ, Saunders BM (2015) Identification of miR-93 as a suitable miR for normalizing miRNA in plasma of tuberculosis patients. J Cell Mol Med 19(7):1606–1613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cao F, Miao Y, Xu KD, Liu PJ (2015) Lethal (2) giant larvae: an indispensable regulator of cell polarity and cancer development. Int J Biol Sci 11(4):380–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Krebs AM, Mitschke J, Losada ML, Schmalhofer O, Boerries M, Busch H, Boettcher M, Mougiakakos D, Reichardt W, Bronsert P et al (2017) The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol 19(5):518–542

    Article  CAS  PubMed  Google Scholar 

  71. Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M, Mikulits W, Brabletz T, Strand D, Obrist P et al (2007) The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 26(49):6979–6988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Russ A, Louderbough JMV, Zarnescu D, Schroeder JA (2012) Hugl1 and Hugl2 in mammary epithelial cells: polarity, proliferation, and differentiation. PLoS One 7(10). https://doi.org/10.1371/journal.pone.0047734

  73. Stephens R, Lim K, Portela M, Kvansakul M, Humbert PO, Richardson HE (2018) The scribble cell polarity module in the regulation of cell signaling in tissue development and tumorigenesis. J Mol Biol 430(19):3585–3612

    Article  CAS  PubMed  Google Scholar 

  74. Cuk K, Zucknick M, Madhavan D, Schott S, Golatta M, Heil J, Marme F, Turchinovich A, Sinn P, Sohn C et al (2013) Plasma microrna panel for minimally invasive detection of breast cancer. PLoS One 8(10). https://doi.org/10.1371/journal.pone.0076729

  75. Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4. https://doi.org/10.7554/eLife.05005

  76. Mangolini A, Ferracin M, Zanzi MV, Saccenti E, Ebnaof SO, Poma VV, Sanz JM, Passaro A, Pedriali M, Frassoldati A et al (2015) Diagnostic and prognostic microRNAs in the serum of breast cancer patients measured by droplet digital PCR. Biomark Res 3. https://doi.org/10.1186/s40364-015-0037-0

  77. McDermott AM, Miller N, Wall D, Martyn LM, Ball G, Sweeney KJ, Kerin MJ (2014) Identification and validation of oncologic miRNA biomarkers for luminal A-like breast cancer. PLoS One 9(1). https://doi.org/10.1371/journal.pone.0087032

  78. Madadi S, Schwarzenbach H, Lorenzen J, Soleimani M (2019) MicroRNA expression studies: challenge of selecting reliable reference controls for data normalization. Cell Mol Life Sci 76(18):3497–3514

    Article  CAS  PubMed  Google Scholar 

  79. Xiang MQ, Zeng Y, Yang RR, Xu HF, Chen Z, Zhong J, Xie HL, Xu YH, Zeng X (2014) U6 is not a suitable endogenous control for the quantification of circulating microRNAs. Biochem Biophys Res Commun 454(1):210–214

    Article  CAS  PubMed  Google Scholar 

  80. Arnold M, Abnet CC, Neale RE, Vignat J, Giovannucci EL, McGlynn KA, Bray F (2020) Global burden of 5 major types of gastrointestinal cancer. Gastroenterology 159(1):335–349

    Article  PubMed  Google Scholar 

  81. Schlesinger-Raab A, Werner J, Friess H, Holzel D, Engel J (2017) Age and outcome in gastrointestinal cancers: a population-based evaluation of oesophageal, gastric and colorectal cancer. Visceral Med 33(4):245–253

    Article  Google Scholar 

  82. Zheng Q, Chen CY, Guan HY, Kang WBA, Yu CJ (2017) Prognostic role of microRNAs in human gastrointestinal cancer: a systematic review and meta-analysis. Oncotarget 8(28):46611–46623

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zhao BS, Liu SG, Wang TY, Ji YH, Qi B, Tao YP, Li HC, Wu XN (2013) Screening of microRNA in patients with esophageal cancer at same tumor node metastasis stage with different prognoses. Asian Pac J Cancer Prev 14(1):139–143

    Article  PubMed  Google Scholar 

  84. Dutt A, Ramos AH, Hammerman PS, Mermel C, Cho J, Sharifnia T, Chande A, Tanaka KE, Stransky N, Greulich H et al (2011) Inhibitor-sensitive FGFR1 amplification in human non-small cell lung cancer. PLoS One 6(6). https://doi.org/10.1371/journal.pone.0020351

  85. Sugiura K, Ozawa S, Kitagawa Y, Ueda M, Kitajima M (2007) Co-expression of aFGF and FGFR-1 is predictive of a poor prognosis in patients with esophageal squamous cell carcinoma. Oncol Rep 17(3):557–564

    CAS  PubMed  Google Scholar 

  86. Turner N, Pearson A, Sharpe R, Lambros M, Geyer F, Lopez-Garcia MA, Natrajan R, Marchio C, Iorns E, Mackay A et al (2010) FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res 70(5):2085–2094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu R, Zhang CN, Hu ZB, Li G, Wang C, Yang CH, Huang DZ, Chen X, Zhang HY, Zhuang R et al (2011) A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur J Cancer 47(5):784–791

    Article  CAS  PubMed  Google Scholar 

  88. Shin VY, Ng EKO, Chan VW, Kwong A, Chu KM (2015) A three-miRNA signature as promising non-invasive diagnostic marker for gastric cancer. Mol Cancer 14. https://doi.org/10.1186/s12943-015-0473-3

  89. Hedayat S, Lampis A, Vlachogiannis G, Khan K, Cunningham D, Marchetti S, Fassan M, Begum R, Schirripa M, Loupakis F et al (2019) Circulating miR-652-3p as a biomarker of drug resistance in metastatic colorectal cancer patients. Paper presented at the Conference on Molecular Analysis for Personalised Therapy (MAP), London, 7-9 Nov 2019

  90. Kanaan Z, Roberts H, Eichenberger MR, Billeter A, Ocheretner G, Pan JM, Rai SN, Jorden J, Williford A, Galandiuk S (2013) A plasma microRNA panel for detection of colorectal adenomas a step toward more precise screening for colorectal cancer. Ann Surg 258(3):400–408

    Article  PubMed  Google Scholar 

  91. Xu M, Kuang Y, Wang M, Han X, Yang Q (2017) A microRNA expression signature as a predictor of survival for colon adenocarcinoma. Neoplasma 64(1):56–64

    Article  CAS  PubMed  Google Scholar 

  92. Wing-Lun E, Eaton SA, Hur SSJ, Aiken A, Young PE, Buckland ME, Li CCY, Cropley JE, Suter CM (2016) Nutrition has a pervasive impact on cardiac microRNA expression in isogenic mice. Epigenetics 11(7):475–481

    Article  PubMed  PubMed Central  Google Scholar 

  93. Dluzen DF, Hooten NN, Zhang YQ, Kim Y, Glover FE, Tajuddin SM, Jacob KD, Zonderman AB, Evans MK (2016) Racial differences in microRNA and gene expression in hypertensive women. Sci Rep 6. https://doi.org/10.1038/srep35815

  94. Urquidi V, Netherton M, Gomes-Giacoia E, Serie DJ, Eckel-Passow J, Rosser CJ, Goodison S (2016) A microRNA biomarker panel for the non-invasive detection of bladder cancer. Oncotarget 7(52):86290–86299

    Article  PubMed  PubMed Central  Google Scholar 

  95. Liu X, Wei LW, Zhao BB, Cai XX, Dong CH, Yin FQ (2018) Low expression of KCNN3 may affect drug resistance in ovarian cancer. Mol Med Rep 18(2):1377–1386

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Potier M, Joulin V, Roger S, Besson P, Jourdan ML, LeGuennec JY, Bougnoux P, Vandier C (2006) Identification of SK3 channel as a new mediator of breast cancer cell migration. Mol Cancer Ther 5(11):2946–2953

    Article  CAS  PubMed  Google Scholar 

  97. Steinestel K, Eder S, Ehinger K, Schneider J, Genze F, Winkler E, Wardelmann E, Schrader AJ, Steinestel J (2016) The small conductance calcium-activated potassium channel 3 (SK3) is a molecular target for edelfosine to reduce the invasive potential of urothelial carcinoma cells. Tumor Biol 37(5):6275–6283

    Article  CAS  Google Scholar 

  98. Chantome A, Girault A, Potier M, Collin C, Vaudin P, Pages JC, Vandier C, Joulin V (2009) KCa2.3 channel-dependent hyperpolarization increases melanoma cell motility. Exp Cell Res 315(20):3620–3630

    Article  CAS  PubMed  Google Scholar 

  99. Li JC, Zou XM (2019) MiR-652 serves as a prognostic biomarker in gastric cancer and promotes tumor proliferation, migration, and invasion via targeting RORA. Cancer Biomarkers 26(3):323–331

    Article  CAS  PubMed  Google Scholar 

  100. Kim H, Lee JM, Lee G, Bhin J, Oh SK, Kim K, Pyo KE, Lee JS, Yim HY, Kim KI et al (2011) DNA damage-induced ROR alpha is crucial for p53 stabilization and increased apoptosis. Mol Cell 44(5):797–810

    Article  CAS  PubMed  Google Scholar 

  101. McAvoy S, Ganapathiraju SC, Ducharme-Smith AL, Pritchett JR, Kosari F, Perez DS, Zhu Y, James CD, Smith DI (2007) Non-random inactivation of large common fragile site genes in different cancers. Cytogenet Genome Res 118(2-4):260–269

    Article  CAS  PubMed  Google Scholar 

  102. Wang YJ, Solt LA, Kojetin DJ, Burris TP (2012) Regulation of p53 stability and apoptosis by a ROR agonist. PLoS One 7(4). https://doi.org/10.1371/journal.pone.0034921

  103. Liu Y, Ding W, Ge H, Ponnusamy M, Wang Q, Hao XD, Wu W, Zhang Y, Yu WP, Ao X et al (2019) FOXK transcription factors: regulation and critical role in cancer. Cancer Lett 458:1–12

    Article  CAS  PubMed  Google Scholar 

  104. Faber J, Krivtsov AV, Stubbs MC, Wright R, Davis TN, van den Heuvel-Eibrink M, Zwaan CM, Kung AL, Armstrong SA (2009) HOXA9 is required for survival in human MLL-rearranged acute leukemias. Blood 113(11):2375–2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Hwang JA, Lee BB, Kim Y, Hong SH, Kim YH, Han J, Shim YM, Yoon CY, Lee YS, Kim DH (2015) HOXA9 inhibits migration of lung cancer cells and its hypermethylation is associated with recurrence in non-small cell lung cancer. Mol Carcinog 54:E72–E80

    Article  CAS  PubMed  Google Scholar 

  106. Ramos-Mejia V, Navarro-Montero O, Ayllon V, Bueno C, Romero T, Real PJ, Menendez P (2014) HOXA9 promotes hematopoietic commitment of human embryonic stem cells. Blood 124(20):3065–3075

    Article  CAS  PubMed  Google Scholar 

  107. Lulla RR, Costa FF, Bischof JM, Chou PM, Bonaldo MF, Vanin EF, Soares MB (2011) Identification of differentially expressed microRNAs in osteosarcoma. Sarcoma 2011:732690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Jin YP, Yang L, Li X (2020) MicroRNA-652 promotes cell proliferation and osteosarcoma invasion by directly targeting KLF9. Exp Ther Med 20(4):2953–2960

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Li Y, Sun Q, Jiang MC, Li S, Zhang JY, Xu ZQ, Guo DY, Gu TN, Wang BY, Xiao L et al (2019) KLF9 suppresses gastric cancer cell invasion and metastasis through transcriptional inhibition of MMP28. FASEB J 33(7):7915–7928

    Article  CAS  PubMed  Google Scholar 

  110. Simmen FA, Su Y, Xiao RJ, Zeng ZY, Simmen RCM (2008) The Kruppel-like factor 9 (KLF9) network in HEC-1-A endometrial carcinoma cells suggests the carcinogenic potential of dys-regulated KLF9 expression. Reprod Biol Endocrinol 6. https://doi.org/10.1186/1477-7827-6-41

  111. Gaudet AD, Fonken LK, Watkins LR, Nelson RJ, Popovich PG (2018) MicroRNAs: roles in regulating neuroinflammation. Neuroscientist 24(3):221–245

    Article  CAS  PubMed  Google Scholar 

  112. Im HI, Kenny PJ (2012) MicroRNAs in neuronal function and dysfunction. Trends Neurosci 35(5):325–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Issler O, Chen A (2015) Determining the role of microRNAs in psychiatric disorders. Nat Rev Neurosci 16(4):201–212

    Article  CAS  PubMed  Google Scholar 

  114. Santarelli DM, Beveridge NJ, Tooney PA, Cairns MJ (2011) Upregulation of dicer and microRNA expression in the dorsolateral prefrontal cortex Brodmann area 46 in schizophrenia. Biol Psychiatry 69(2):180–187

    Article  CAS  PubMed  Google Scholar 

  115. Lewohl JM, Nunez YO, Dodd PR, Tiwari GR, Harris RA, Mayfield RD (2011) Up-regulation of microRNAs in brain of human alcoholics. Alcohol Clin Exp Res 35(11):1928–1937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lai CY, Yu SL, Hsieh MH, Chen CH, Chen HY, Wen CC, Huang YH, Hsiao PC, Hsiao CK et al (2011) MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia. PLoS One 6(6). https://doi.org/10.1371/journal.pone.0021635

  117. Lai CY, Lee SY, Scarr E, Yu YH, Lin YT, Liu CM, Hwang TJ, Hsieh MH, Liu CC, Chien YL et al (2016) Aberrant expression of microRNAs as biomarker for schizophrenia: from acute state to partial remission, and from peripheral blood to cortical tissue. Transl Psychiatry 6:7

    Article  CAS  Google Scholar 

  118. Lee M, Cho H, Jung SH, Yim SH, Cho SM, Chun JW, Paik SH, Park YE, Cheon DH, Lee JE et al (2018) Circulating microRNA expression levels associated with Internet gaming disorder. Front Psychiatry 9. https://doi.org/10.3389/fpsyt.2018.00081

  119. Walker RM, Rybka J, Anderson SM, Torrance HS, Boxall R, Sussmann JE, Porteous DJ, McIntosh AM, Evans KL (2015) Preliminary investigation of miRNA expression in individuals at high familial risk of bipolar disorder. J Psychiatr Res 62:48–55

    Article  PubMed  PubMed Central  Google Scholar 

  120. Schür RR, Draisma LWR, Wijnen JP, Boks MP, Koevoets M, Joels M, Klomp DW, Kahn RS, Vinkers CH (2016) Brain GABA levels across psychiatric disorders: a systematic literature review and meta-analysis of H-1-MRS studies. Hum Brain Mapp 37(9):3337–3352

    Article  PubMed  PubMed Central  Google Scholar 

  121. Gladkevich A, Kauffman HF, Korf J (2004) Lymphocytes as a neural probe: potential for studying psychiatric disorders. Prog Neuro-Psychopharmacol Biol Psychiatry 28(3):559–576

    Article  Google Scholar 

  122. Lindqvist D, Epel ES, Mellon SH, Penninx BW, Revesz D, Verhoeven JE, Reus VI, Lin J, Mahan L, Hough CM et al (2015) Psychiatric disorders and leukocyte telomere length: underlying mechanisms linking mental illness with cellular aging. Neurosci Biobehav Rev 55:333–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Nuzziello N, Vilardo L, Pelucchi P, Consiglio A, Liuni S, Trojano M, Liguori M (2018) Investigating the role of microRNA and transcription factor co-regulatory networks in multiple sclerosis pathogenesis. Int J Mol Sci 19(11). https://doi.org/10.3390/ijms19113652

  124. Bach TL, Kerr WT, Wang YF, Bauman EM, Kine P, Whiteman EL, Morgan RS, Williamson EK, Ostap EM, Burkhardt JK et al (2007) PI3K regulates pleckstrin-2 in T-cell cytoskeletal reorganization. Blood 109(3):1147–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Wu DM, Deng SH, Zhou J, Han R, Liu T, Zhang T, Li J, Chen JP, Xu Y (2020) PLEK2 mediates metastasis and vascular invasion via the ubiquitin-dependent degradation of SHIP2 in non-small cell lung cancer. Int J Cancer 146(9):2563–2575

    Article  CAS  PubMed  Google Scholar 

  126. Grube S, Gerchen MF, Adamcio B, Pardo LA, Martin S, Malzahn D, Papiol S, Begemann M, Ribbe K, Friedrichs H et al (2011) A CAG repeat polymorphism of KCNN3 predicts SK3 channel function and cognitive performance in schizophrenia. Embo Mol Med 3(6):309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Smolin B, Karry R, Gal-Ben-Ari S, Ben-Shachar D (2012) Differential expression of genes encoding neuronal ion-channel subunits in major depression, bipolar disorder and schizophrenia: implications for pathophysiology. Int J Neuropsychopharmacol 15(7):869–882

    Article  CAS  PubMed  Google Scholar 

  128. Kimura T, Takahashi MP, Okuda Y, Kaido M, Fujimura H, Yanagihara T, Sakoda S (2000) The expression of ion channel mRNAs in skeletal muscles from patients with myotonic muscular dystrophy. Neurosci Lett 295(3):93–96

    Article  CAS  PubMed  Google Scholar 

  129. Dahlman I, Belarbi Y, Laurencikiene J, Pettersson AM, Arner P, Kulyte A (2017) Comprehensive functional screening of miRNAs involved in fat cell insulin sensitivity among women. Am J Physiol Endocrinol Metab 312(6):E482–E494

    Article  PubMed  Google Scholar 

  130. Meyre D, Bouatia-Naji N, Tounian A, Samson C, Lecoeur C, Vatin V, Ghoussaini M, Wachter C, Hercberg S, Charpentier G et al (2005) Variants of ENPP1 are associated with childhood and adult obesity and increase the risk of glucose intolerance and type 2 diabetes. Nat Genet 37(8):863–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Roberts F, Zhu DX, Farquharson C, Macrae VE (2019) ENPP1 in the regulation of mineralization and beyond. Trends Biochem Sci 44(7):616–628

    Article  CAS  PubMed  Google Scholar 

  132. Shi YF, Feng Y, Kang JH, Liu C, Li ZX, Li DS, Cao W, Qiu J, Guo ZL, Bi EG et al (2007) Critical regulation of CD4(+) T cell survival and autoimmunity by beta-arrestin 1. Nat Immunol 8(8):817–824

    Article  CAS  PubMed  Google Scholar 

  133. Wang YY, Tang YW, Teng L, Wu YL, Zhao XH, Pei G (2006) Association of beta-arrestin and TRAF6 negatively regulates Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol 7(2):139–147

    Article  CAS  PubMed  Google Scholar 

  134. Buchanan FG, Gorden DL, Matta P, Shi Q, Matrisian LM, DuBois RN (2006) Role of beta-arrestin 1 in the metastatic progression of colorectal cancer. Proc Natl Acad Sci U S A 103(5):1492–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kapoor N, Narayana Y, Patil SA, Balaji KN (2010) Nitric oxide is involved in Mycobacterium bovis bacillus Calmette-Guerin-activated Jagged1 and Notch1 signaling. J Immunol 184(6):3117–3126

    Article  CAS  PubMed  Google Scholar 

  136. Yuan XY, Berg N, Lee JW, Le TT, Neudecker V, Jing N, Eltzschig H (2018) MicroRNA miR-223 as regulator of innate immunity. J Leukoc Biol 104(3):515–524

    Article  CAS  PubMed  Google Scholar 

  137. Gao YL, Lin L, Li T, Yang JR, Wei YB (2017) The role of miRNA-223 in cancer: function, diagnosis and therapy. Gene 616:1–7

    Article  CAS  PubMed  Google Scholar 

  138. Zhi Y, Pan JH, Shen WH, He P, Zheng J, Zhou XZ, Lu GS, Chen ZW, Zhou ZS (2016) Ginkgolide B inhibits human bladder cancer cell migration and invasion through microRNA-223-3p. Cell Physiol Biochem 39(5):1787–1794

    Article  CAS  PubMed  Google Scholar 

  139. Akao Y, Nakagawa Y, Kitade Y, Kinoshita T, Naoe T (2007) Downregulation of microRNAs-143 and-145 in B-cell malignancies. Cancer Sci 98(12):1914–1920

    Article  CAS  PubMed  Google Scholar 

  140. Clape C, Fritz V, Henriquet C, Apparailly F, Fernandez PL, Iborra F, Avances C, Villalba M, Culine S, Fajas L (2009) miR-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLoS One 4 (10). https://doi.org/10.1371/journal.pone.0007542

  141. Boucher JM, Peterson SM, Urs S, Zhang CX, Liaw L (2011) The miR-143/145 cluster is a novel transcriptional target of Jagged-1/Notch signaling in vascular smooth muscle cells. J Biol Chem 286(32):28312–28321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Shen KX, Cao Z, Zhu RZ, You L, Zhang TP (2019) The dual functional role of MicroRNA-18a (miR-18a) in cancer development. Clin Transl Med 8(1). https://doi.org/10.1186/s40169-019-0250-9

  143. Xu XX, Zhu S, Tao ZW, Ye SL (2018) High circulating miR-18a, miR-20a, and miR-92a expression correlates with poor prognosis in patients with non-small cell lung cancer. Cancer Med 7(1):21–31

    Article  CAS  PubMed  Google Scholar 

  144. Jiang Y, Zhou JP, Zhao JS, Hou DQ, Zhang HY, Li L, Zou D, Hu JF, Zhang Y, Jing ZT (2020) MiR-18a-downregulated RORA inhibits the proliferation and tumorigenesis of glioma using the TNF-alpha-mediated NF-kappa B signaling pathway. Ebiomedicine 52. https://doi.org/10.1016/j.ebiom.2020.102651

  145. Chen L, Xiao H, Wang ZH, Huang Y, Liu ZP, Ren H, Song H (2014) miR-29a suppresses growth and invasion of gastric cancer cells in vitro by targeting VEGF-A. BMB Rep 47(1):39–44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Sun XJ, Wei L, Chen Q, Terek RM (2015) MicroRNA regulates vascular endothelial growth factor expression in chondrosarcoma cells. Clin Orthop Relat Res 473(3):907–913

    Article  PubMed  Google Scholar 

  147. Takahashi Y, Forrest ARR, Maeno E, Hashimoto T, Daub CO, Yasuda J (2009) miR-107 and miR-185 can induce cell cycle arrest in human non small cell lung cancer cell lines. PLoS One 4 (8). https://doi.org/10.1371/journal.pone.0006677

  148. Chen L, Chen XR, Chen FF, Liu Y, Li P, Zhang R, Yan K, Yi YJ, Xu ZM, Jiang XD (2013) MicroRNA-107 inhibits U87 glioma stem cells growth and invasion. Cell Mol Neurobiol 33(5):651–657

    Article  CAS  PubMed  Google Scholar 

  149. Xue XC, Cao AT, Cao XC, Yao SX, Carlsen ED, Soong L, Liu CG, Liu XP, Liu ZJ, Duck LW et al (2014) Downregulation of microRNA-107 in intestinal CD11c(+) myeloid cells in response to microbiota and proinflammatory cytokines increases IL-23p19 expression. Eur J Immunol 44(3):673–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hennessy EJ, Sheedy FJ, Santamaria D, Barbacid M, O’Neill LAJ (2011) Toll-like receptor-4 (TLR4) down-regulates microRNA-107, increasing macrophage adhesion via cyclin-dependent kinase 6. J Biol Chem 286(29):25531–25539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915):520–562

    Article  CAS  PubMed  Google Scholar 

  152. Perlman RL (2016) Mouse models of human disease an evolutionary perspective. Evol Med Public Health 2016(1):170–176

    PubMed  PubMed Central  Google Scholar 

  153. Kozomara A, Birgaoanu M, Griffiths-Jones S (2019) miRBase: from microRNA sequences to function. Nucleic Acids Res 47(D1):D155–D162

    Article  CAS  PubMed  Google Scholar 

  154. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Code availability

Not applicable

Funding

MS was a recipient of a UTS Research Excellence Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

MS performed the literature search and data analysis and wrote the manuscript; BS supervised and reviewed the work. All authors have read and approved this final version of the review.

Corresponding author

Correspondence to Bernadette M. Saunders.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(XLSX 40 kb)

ESM 2

(XLSX 17 kb)

ESM 3

(XLSX 10 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stevens, M.T., Saunders, B.M. Targets and regulation of microRNA-652-3p in homoeostasis and disease. J Mol Med 99, 755–769 (2021). https://doi.org/10.1007/s00109-021-02060-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-021-02060-8

Keywords

Navigation