Skip to main content

Advertisement

Log in

Molecular mechanisms of extracellular vesicle-induced vessel destabilization in diabetic retinopathy

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Diabetic retinopathy (DR) is characterized by early dropout of capillary pericytes, leading to loss of control on endothelial proliferation and, subsequently, angiogenesis. We have demonstrated that extracellular vesicles (EV) derived from mesenchymal stem cells (MSC) maintained in diabetic-like conditions may play a role in vessel destabilization, thus contributing to angiogenesis through paracrine signalling. In particular, a role for MMP-2 was described. This study was aimed at further investigating the molecular mechanisms of EV-induced vessel destabilization.

Methods

We evaluated miR-126 expression, the subsequent HIF-1α and VEGF modulation, Ang-2 and PDGF signalling pathways in human retinal pericytes (HRP) after exposure to MSC-derived EV obtained in diabetic-like conditions (high glucose and/or hypoxia).

Results

HRP express miR-126, and this expression is down-regulated in intermittent high glucose. MSC-derived EV obtained in hyperglycaemic/hypoxic conditions down-regulate miR-126 expression in pericytes, leading to increased expression of angiogenic molecules, such as VEGF and HIF-1α. No modulation of Ang-2 and PDGF signalling pathways in pericytes was observed following EV exposure.

Conclusions

HRP express miR-126, and this expression is down-regulated in diabetic-like conditions. Exposure of HRP to EV obtained in diabetic-like conditions is able to decrease miR-126 expression, consistently with previous observations of its involvement in DR and providing further insights into the role of EV in vessel destabilization. In contrast, PDGF and Ang-2 signalling pathways do not seem to be involved in these mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97:512–523

    Article  CAS  PubMed  Google Scholar 

  2. Beltramo E, Lopatina T, Berrone E, Mazzeo A, Iavello A, Camussi G, Porta M (2014) Extracellular vesicles derived from mesenchymal stem cells induce features of diabetic retinopathy in vitro. Acta Diabetol 51:1055–1064

    Article  CAS  PubMed  Google Scholar 

  3. Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, Collino F, Morando L, Busca A, Falda M, Bussolati B et al (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20:1053–1067

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Ratajczak MZ (2011) The emerging role of microvesicles in cellular therapies for organ/tissue regeneration. Nephrol Dial Transplant 26:1453–1456

    Article  PubMed  Google Scholar 

  5. Lopatina T, Kalinina N, Karagyaur M, Stambolsky D, Rubina K, Revischin A, Pavlova G, Parfyonova Y, Tkachuk V (2011) Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS ONE 6:e17899

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Cantaluppi V, Gatti S, Medica D, Figliolini F, Bruno S, Deregibus MC, Sordi A, Biancone L, Tetta C, Camussi G (2012) Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia–reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int 82:412–427

    Article  CAS  PubMed  Google Scholar 

  7. Muller G (2012) Microvesicles/exosomes as potential novel biomarkers of metabolic diseases. Diabetes Metab Syndr Obes 5:247–282

    Article  PubMed Central  PubMed  Google Scholar 

  8. Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581–593

    Article  CAS  PubMed  Google Scholar 

  9. Camussi G, Deregibus MC, Tetta C (2010) Paracrine/endocrine mechanism of stem cells on kidney repair: role of microvesicle-mediated transfer of genetic information. Curr Opin Nephrol Hypertens 19:7–12

    Article  CAS  PubMed  Google Scholar 

  10. Lopatina T, Bruno S, Tetta C, Kalinina N, Porta M, Camussi G (2014) Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential. Cell Commun Signal 12:26

    Article  PubMed Central  PubMed  Google Scholar 

  11. Diamant M, Nieuwland R, Pablo RF, Sturk A, Smit JW, Radder JK (2002) Elevated numbers of tissue-factor exposing microparticles correlate with components of the metabolic syndrome in uncomplicated type 2 diabetes mellitus. Circulation 106:2442–2447

    Article  CAS  PubMed  Google Scholar 

  12. Dhamodaran K, Subramani M, Ponnalagu M, Shetty R, Das D (2014) Ocular stem cells: a status update! Stem Cell Res Ther 5:56

    Article  PubMed Central  PubMed  Google Scholar 

  13. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Péault B (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    Article  CAS  PubMed  Google Scholar 

  14. Gökçinar-Yagci B, Uçkan-Çetinkaya D, Çelebi-Saltik B (2015) Pericytes: properties, functions and applications in tissue engineering. Stem Cell Rev 11:549–559

    Article  PubMed  Google Scholar 

  15. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  16. Wang S, Olson EN (2009) AngiomiRs—key regulators of angiogenesis. Curr Opin Genet Dev 19:205–211

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Mastropasqua R, Toto L, Cipollone F, Santovito D, Carpineto P, Mastropasqua L (2014) Role of microRNAs in the modulation of diabetic retinopathy. Prog Retin Eye Res 43:92–107

    Article  CAS  PubMed  Google Scholar 

  18. Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY, Srivastava D (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15:272–284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15:261–271

    Article  PubMed Central  PubMed  Google Scholar 

  20. Figliolini F, Cantaluppi V, De Lena M, Beltramo S, Romagnoli R, Salizzoni M, Melzi R, Nano R, Piemonti L, Tetta C, Biancone L, Camussi G (2014) Isolation, characterization and potential role in beta cell-endothelium cross-talk of extracellular vesicles released from human pancreatic islets. PLoS ONE 9(7):e102521

    Article  PubMed Central  PubMed  Google Scholar 

  21. Bandello F, Lattanzio R, Zucchiatti I, Del Turco C (2013) Pathophysiology and treatment of diabetic retinopathy. Acta Diabetol 50:1–20

    Article  CAS  PubMed  Google Scholar 

  22. Hammes HP, Feng Y, Pfister F, Brownlee M (2011) Diabetic retinopathy: targeting vasoregression. Diabetes 60:9–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Beltramo E, Porta M (2013) Pericyte loss in diabetic retinopathy: mechanisms and consequences. Curr Med Chem 20:3218–3225

    Article  CAS  PubMed  Google Scholar 

  24. Ramsauer M, D’Amore PA (2002) Getting Tie(2)d up in angiogenesis. J Clin Invest 110:1615–1617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Hanahan D (1997) Signaling vascular morphogenesis and maintenance. Science 277:48–50

    Article  CAS  PubMed  Google Scholar 

  26. Felcht M, Luck R, Schering A, Seidel P, Srivastava K, Hu J, Bartol A, Kienast Y, Vettel C, Loos EK, Kutschera S, Bartels S, Appak S, Besemfelder E, Terhardt D, Chavakis E, Wieland T, Klein C, Thomas M, Uemura A, Goerdt S, Augustin HG (2012) Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signalling. J Clin Invest 122:1991–2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Park SW, Yun JH, Kim JH, Kim KW, Cho CH, Kim JH (2014) Angiopoietin 2 induces pericyte apoptosis via α3β1 integrin signaling in diabetic retinopathy. Diabetes 63:3057–3068

    Article  PubMed  Google Scholar 

  28. Hammes HP, Lin J, Renner O, Shani M, Lundqvist A, Betsholtz C, Brownlee M, Deutsch U (2002) Pericytes and the pathogenesis of diabetic retinopathy. Diabetes 51:3107–3112

    Article  CAS  PubMed  Google Scholar 

  29. Berrone E, Beltramo E, Buttiglieri S, Tarallo S, Rosso A, Hammes HP, Porta M (2009) Establishment and characterization of a human retinal pericyte line: a novel tool for the study of diabetic retinopathy. Int J Mol Med 23:373–378

    CAS  PubMed  Google Scholar 

  30. Fiorentino L, Cavalera M, Mavilio M, Conserva F, Menghini R, Gesualdo L, Federici M (2013) Regulation of TIMP3 in diabetic nephropathy: a role for microRNAs. Acta Diabetol 50:965–969

    Article  CAS  PubMed  Google Scholar 

  31. Ciccacci C, Morganti R, Di Fusco D, D’Amato C, Cacciotti L, Greco C, Rufini S, Novelli G, Sangiuolo F, Marfia GA, Borgiani P, Spallone V (2014) Common polymorphisms in MIR146a, MIR128a and MIR27a genes contribute to neuropathy susceptibility in type 2 diabetes. Acta Diabetol 51:663–671

    Article  CAS  PubMed  Google Scholar 

  32. Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, Mayr A, Weger S, Oberhollenzer F, Bonora E, Shah A, Willeit J, Mayr M (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107:810–817

    Article  CAS  PubMed  Google Scholar 

  33. Bai Y, Bai X, Wang Z, Zhang X, Ruan C, Miao J (2011) MicroRNA-126 inhibits ischemia-induced retinal neovascularization via regulating angiogenic growth factors. Exp Mol Pathol 91:471–477

    Article  CAS  PubMed  Google Scholar 

  34. Ye P, Liu J, He F, Xu W, Yao K (2013) Hypoxia-induced deregulation of miR-126 and its regulative effect on VEGF and MMP-9 expression. Int J Med Sci 11:17–23

    Article  PubMed Central  PubMed  Google Scholar 

  35. Lindahl P, Johansson BR, Levéen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245

    Article  CAS  PubMed  Google Scholar 

  36. Hellström M, Kalén M, Lindahl P, Abramsson A, Betsholtz C (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047–3055

    PubMed  Google Scholar 

  37. Pfister F, Wang Y, Schreiter K, vom Hagen F, Altvater K, Hoffmann S, Deutsch U, Hammes HP, Feng Y (2010) Retinal overexpression of angiopoietin-2 mimics diabetic retinopathy and enhances vascular damages in hyperglycemia. Acta Diabetol 47:59–64

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Serena Grimaldi for technical help and Prof. Giovanni Camussi for help and advice.

Funding

This study was funded by an European Foundation for the Study of Diabetes/Novartis award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Beltramo.

Ethics declarations

Conflict of interest

Aurora Mazzeo, Elena Beltramo, Alessandra Iavello, Andrea Carpanetto and Massimo Porta declare that they have no conflicts of interest.

Statement of human and animal rights

This article does not contain any studies with human or animal subjects performed by the any of the authors.

Informed consent

For this type of study formal consent is not required.

Additional information

Managed by Massimo Federici.

A. Mazzeo and E. Beltramo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazzeo, A., Beltramo, E., Iavello, A. et al. Molecular mechanisms of extracellular vesicle-induced vessel destabilization in diabetic retinopathy. Acta Diabetol 52, 1113–1119 (2015). https://doi.org/10.1007/s00592-015-0798-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-015-0798-9

Keywords

Navigation