Skip to main content
Log in

Ni–Fe Cathode Catalyst in Zero-Gap Alkaline Water Electrolysis

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Ni–Fe cathode catalyst for zero-gap alkaline water electrolysis was studied. Ni–Fe coatings on nickel foam were prepared by direct current (DC) and pulse current (PC) electrodeposition. The influence of different plating conditions and composition of the electrolyte on the morphology of the samples was studied. It was found that under DC electrodeposition, iron is dominant in the coating. Under PC plating conditions, Ni is the dominant element in Ni–Fe coatings. Ni–Fe coatings prepared under DC electrodeposition provide an effective catalyst in zero-gap electrolysis. Increasing Fe content in the coatings improves the catalytic activity of Ni–Fe catalyst. The study of convenient parameters of PC electrodeposition seems to be complex to reach a highly active surface area.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Sun, D. Zhu, Y. Sun, L. Ma, J. Guo, Q. Liu, X. Zhang, J. Alloys Compd., 833, 155131 (2020)

  2. P. Nikolaidis, A. Poullikkas, Renew. Sust. Ener. Rev. 67, 597 (2017)

    Article  CAS  Google Scholar 

  3. B. Deng, L. Zhou, Z. Jiang, Z.-J. Jiang, J. Catal. 373, 81 (2019)

    Article  CAS  Google Scholar 

  4. A.N. Colli, H.H. Girault, A. Battistel, Materials 12, 1336 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  5. O. Schmidt, A. Gambur, I. Staffell, A. Hawkes, J. Nelson, S. Few, Int. J. Hydrogen Energ. 42, 30470 (2017)

    Article  CAS  Google Scholar 

  6. R. Phillips, C.W. Dunnill, RSC Adv. 6, 100643 (2016)

  7. V. Paserin, S. Marcuson, J. Shu, D.S. Wilkinson, Adv. Eng. Mater. 6, 454 (2004)

    Article  CAS  Google Scholar 

  8. J. Chi, H. Yu, Chinese. J. Catal. 39, 390 (2018)

    CAS  Google Scholar 

  9. M. Zeng, Y. Li, J. Mater. Chem. A. 3, 14842 (2015)

    Google Scholar 

  10. M. David, C. Ocampo-Martínez, R. Sánchez-Peña, J. Energy Storage 23, 392 (2019)

    Article  Google Scholar 

  11. R. Phillips, A. Edwards, B. Rome, D.R. Jones, C.W. Dunnil, Int. J. Hydrogen Energ. 42, 23986 (2017)

    Article  CAS  Google Scholar 

  12. J. Brauns, T. Turek, Processes 8, 248 (2020)

    Article  CAS  Google Scholar 

  13. M.T. de Groot, A.W. Vreman, Electrochim. Acta. 369, 137684 (2021)

  14. M. Grdeń, M. Alsabet, G. Jerkiewicz, A.C.S. Appl, Mater. Interfaces 4, 3012 (2012)

    Article  CAS  Google Scholar 

  15. J. van Drunen, B. Kinkead, M.C.P. Wang, E. Sourty, B.D. Gates, G. Jerkiewicz, A.C.S. Appl, Mater. Interfaces 5, 6712 (2013)

    Article  CAS  Google Scholar 

  16. D. Pletcher, and Li, X. 2011, Int. J. Hydrogen Energ. 36, 15089–15104.

  17. D.M.F. Santos, C.A.C. Sequeira, D. Maccio, A. Saccone, J.L. Figueiredo, Int. J. Hydrogen Energ. 38, 3137 (2013)

    Article  CAS  Google Scholar 

  18. M.A. Khan, H. Zhao, W. Zou, Z. Chen, W. Cao, J. Fang, J. Xu, L. Zhang, J. Zhang, Electrochemical Energy Reviews 1, 483 (2018)

    Article  CAS  Google Scholar 

  19. J. Ding, S. Ji, H. Wang, H. Gai, F. Liu, V. Linkov, R. Wang, Int. J. Hydrogen Energ. 44, 2832 (2019)

    Article  CAS  Google Scholar 

  20. A. Chunduri, S. Gupta, O. Bapat, A. Bhide, R. Fernandes, M.K. Patel, V. Bambole, A. Miotello, N. Patel, Appl. Catal. B-Environ. 259, 118051 (2019)

  21. M. Shalom, D. Ressnig, X. Yang, G. Clavel, T.P. Fellinger, M. Antonietti, J. Mater. Chem A. 3, 8171 (2015)

    Article  CAS  Google Scholar 

  22. A.T. Swesi, J. Masud, M. Nath, Energy Environ. Sci. 9, 1771 (2016)

    Article  CAS  Google Scholar 

  23. S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, S. Kundu, ACS Catal. 6, 8069 (2016)

    Article  CAS  Google Scholar 

  24. K. Jong-Hoon, L. Jung-Nam, Y. Chung-Yul, L. Kyo-Beum, L. Woong-Moo, Int. J. Hydrogen Energ. 40, 10720 (2015)

    Article  CAS  Google Scholar 

  25. S.H. Hong, S.H. Ahn, J. Choi, J.Y. Kim, H.Y. Kim, H.-Y. Kim, J.H. Jang, H. Kim, S.-K. Kim, Appl. Surf. Sci. 349, 629 (2015)

    Article  CAS  Google Scholar 

  26. A.Y. Faid, A.O. Barnett, F. Seland, S. Sunde, Catalysts 8, 614 (2018)

    Article  CAS  Google Scholar 

  27. C. González-Buch, I. Herraiz-Cardona, E. Ortega, J. García-Antón, V. Pérez-Herranz, J. Appl. Electrochem. 46, 791 (2016)

    Article  CAS  Google Scholar 

  28. X. Wang, R. Su, H. Aslan, J. Kibsgaard, S. Wendt, L. Meng, M. Dong, Y. Huang, F. Besenbacher, Nano Energy 12, 9 (2015)

    Article  CAS  Google Scholar 

  29. J. Lu, S. Yin, P.K. Shen, Electrochemical Energy Reviews 2, 105 (2019)

    Article  CAS  Google Scholar 

  30. P. Zhang, L. Li, D. Nordlund, H. Chen, L. Fan, B. Zhang, X. Sheng, Q. Daniel, L. Sun, Nat. Commun. 9, 381 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. E. Hatami, A. Toghraei, G.B. Darband, Int. J. Hydrog. Energy 46, 9394 (2021)

    Article  CAS  Google Scholar 

  32. Z. Ge, B. Fu, J. Zhao, X. Li, B. Ma, Y. Chen, J. Mater. Sci. 55, 14081 (2020)

    Article  CAS  Google Scholar 

  33. M. Gong, H. Dai, Nano Res. 8, 23 (2015)

    Article  CAS  Google Scholar 

  34. V. Torabinejad, M. Aliofkhazraei, S. Assareh, M.H. Allahyarzadeh, A. Sabour Rouhaghdam, J. Alloys Compd. 691, 841 (2017)

  35. L. Ding, K. Li, Z. Xie, G. Yang, S. Yu, W. Wang, H. Yu, J. Baxter, H.M. Meyer, D.A. Cullen, F.Y. Zhang, A.C.S. Appl, Mater. Interfaces 13, 20070 (2021)

    Article  CAS  Google Scholar 

  36. J. Záchenská, M. Ábel, M. Mičušík, V. Jorík, M. Zemanová, J. Appl. Electrochem. 50, 959 (2020)

    Article  CAS  Google Scholar 

  37. B.H.R. Suryanto, Y. Wang, R.K. Hocking, W. Adamson, C. Zhao, Nat. Commun. 10, 5599 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. N. Eliaz, T.M. Sridhar, E. Gileadi, Electrochim. Acta 50, 2893 (2005)

    Article  CAS  Google Scholar 

  39. C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc. 135, 16977 (2013)

    Article  CAS  PubMed  Google Scholar 

  40. M. Matlosz, J. Electrochem. Soc. 140, 2272 (1993)

    Article  CAS  Google Scholar 

  41. B.C. Baker, A.C. West, J. Electrochem. Soc. 144, 164 (1997)

    Article  CAS  Google Scholar 

  42. B.C. Baker, A.C. West, J. Electrochem. Soc. 144, 169 (1997)

    Article  CAS  Google Scholar 

  43. N. Zech, E.J. Podlaha, D. Landolt, J. Electrochem. Soc. 146, 2892 (1999)

    Article  CAS  Google Scholar 

  44. S.D. Leith, S. Ramli, D.T. Schwartz, J. Electrochem. Soc. 146, 1431 (1999)

    Article  CAS  Google Scholar 

  45. I.A. Raj, K.I. Vasu, J. Appl. Electrochem. 20, 32 (1990)

    Article  CAS  Google Scholar 

  46. Avantage, version 5.9921; XPS Knowledge Database; Thermo Fisher Scientific Inc., UK.

  47. G. Wang, D. Zheng, D. Liu, J. Harris, J. Si, T. Ding, D. Qu, Elecrochim. Acta 247, 722 (2017)

    Article  CAS  Google Scholar 

  48. D.A. Corrigan, J. Electrochem. Soc. 134, 377 (1989)

    Article  Google Scholar 

  49. L. Trotochaud, S.L. Young, J.K. Ranney, S.W. Boettcher, J. Am. Chem. Soc. 136, 6744 (2014)

    Article  CAS  PubMed  Google Scholar 

  50. L. Francàs, S. Corby, S. Selim, D. Lee, C.A. Mesa, R. Godin, E. Pastor, I.E.L. Stephens, K.-S. Choi, J.R. Durrant, Nat. Commun. 10, 5208 (2018)

    Article  CAS  Google Scholar 

  51. S. Klaus, Y. Cai, W. Louie, L. Trotochaud, A.T. Bell, J. Phys. Chem. C 119, 7243 (2015)

    Article  CAS  Google Scholar 

  52. R. Solmaz, G. Kardaş, Elecrochim. Acta 54, 3726 (2009)

    Article  CAS  Google Scholar 

  53. S.I.P. Bakovic, P. Acharya, M. Watkins, H. Thornton, S. Hiu, L.F. Greenlee, J. Catal. 394, 104 (2021)

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the grant of the Slovak Scientific Grant Agency VEGA under the contract number 1/0747/21 and VEGA 02/0006/22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Záchenská.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Záchenská, J., Jorík, V., Vančo, Ľ. et al. Ni–Fe Cathode Catalyst in Zero-Gap Alkaline Water Electrolysis. Electrocatalysis 13, 447–456 (2022). https://doi.org/10.1007/s12678-022-00734-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00734-6

Keywords

Navigation