Skip to main content
Log in

Nickel-based nanocoatings on 3D Ni foam for zero-gap alkaline water electrolysis

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The active surface of the 3D nickel foam electrodes was prepared by electrodeposition. Nickel-based metallic nanocoatings were deposited on pure nickel foam. Optimum parameters of the electrodeposition were found using the central composite rotatable design optimisation method. Pure nickel foam, electrodeposited nickel, and Ni–W coatings on the foam were tested for the load and stability measurements by zero-gap alkaline water electrolysis. It was found that Ni–W surface layer was superior to the nickel coating. This can be explained by a higher amount of active sites due to W content.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Barreto L, Makihira A, Riahi K (2003) The hydrogen economy in the 21st century: a sustainable development scenario. Int J Hydrog Energy 28:267–284. https://doi.org/10.1016/S0360-3199(02)00074-5

    Article  CAS  Google Scholar 

  2. Zou X, Zhang Y (2015) Noble metal-free hydrogen revolution catalysts for water splitting. Soc Rev 44:5148–5180. https://doi.org/10.1039/C4CS00448E

    Article  CAS  Google Scholar 

  3. Durst J, Siebel A, Simon C, Hasché F, Herranz J, Gasteiger HA (2014) New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ Sci 7:2255–2260. https://doi.org/10.1039/C4EE00440J

    Article  CAS  Google Scholar 

  4. Zeng M, Li Y (2015) Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J Mater Chem A 3:14942–14962. https://doi.org/10.1039/C5TA02974K

    Article  CAS  Google Scholar 

  5. Gong M, Wang D-Y, Chen C-C, Hwang B-J, Dai H (2016) A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res 9(1):28–46. https://doi.org/10.1007/s12274-015-0965-x

    Article  CAS  Google Scholar 

  6. Chaudhari NK, Jin H, Kim B, Lee K (2017) Nanostructured materials on 3D nickel foam as electrocatalysts for water splitting. Nanoscale 9:12231–12247. https://doi.org/10.1039/C7NR04187J

    Article  CAS  PubMed  Google Scholar 

  7. Siwel KI, Eugénio S, Santos DMF, Silva MT, Montemor MF (2019) 3D nickel foams with controlled morphologies for hydrogen evolution reaction in highly alkaline media. Int J Hydrogen 44:1701–1709. https://doi.org/10.1016/j.ijhydene.2018.11.070

    Article  CAS  Google Scholar 

  8. Tasić GS, Lačnjevac U, Tasić MM, Kaninski MM, Nikolić VM, Žugić DL, Jović VD (2013) Influence of electrodeposition parameters of Ni-W on Ni cathode for alkaline water electrolyser. Int J Hydrogen Energy 98:4291–4297. https://doi.org/10.1016/j.ijhydene.2013.01.193

    Article  CAS  Google Scholar 

  9. Mueller-Langer F, Tzimas E, Kaltchmitt M, Peteves S (2007) Tech-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term. Int J Hydrogen Energy 32:3797–3810. https://doi.org/10.1016/j.ijhydene.2007.05.027

    Article  CAS  Google Scholar 

  10. Santos DMF, Sequeira CAC, Figueiredo JL (2013) Hydrogen production by alkaline water electrolysis. Quim Nova 36(8):1179–1193. https://doi.org/10.1590/S0100-40422013000800017

    Article  Google Scholar 

  11. Bhardwaj M, Balasubramaniam R (2008) Uncoupled non-linear equations method for determining kinetic parameters in case of hydrogen evolution reaction following Volmer-Heyrovsky-Tafel mechanism and Volmer-Heyrovsky mechanism. Int J Hydrogen Energy 35:2178–2188. https://doi.org/10.1016/j.ijhydene.2008.02.027

    Article  CAS  Google Scholar 

  12. Clarke RE, Giddey S, Badwal SPS (2010) Stand-alone PEM water electrolysis system for fain safe operation with renewable energy source. Int J Hydrogen Energy 35:928–935. https://doi.org/10.1016/j.ijhydene.2009.11.100

    Article  CAS  Google Scholar 

  13. Rashid MM, Al Mesfer MK, Naseem H, Danish M (2015) Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. Int J Eng Adv Technol 4(3):80–93

    Google Scholar 

  14. Phillips R, Dunnill CW (2016) Zero gap alkaline electrolysis cell designs for renewable energy storage as hydrogen gas. RSC Adv 6:100643–100651. https://doi.org/10.1039/C6RA22242K

    Article  CAS  Google Scholar 

  15. Schmidt O, Gambhir A, Staffell I, Hawkes A, Nelson J, Few S (2017) Future cost and performance of water electrolysis: an expert elicitation study. Int J Hydrogen Energy 42:30470–30492. https://doi.org/10.1016/j.ijhydene.2017.10.045

    Article  CAS  Google Scholar 

  16. Pletcher D, Li X (2011) Prospects for alkaline zero gap water electrolysers for hydrogen production. Int J Hydrogen Energy 36(23):15089–15104. https://doi.org/10.1016/j.ijhydene.2011.08.080

    Article  CAS  Google Scholar 

  17. Gómez MJ, Diaz LA, Franceschini EA, Lacconi GI, Abuin GC (2019) 3D nanostructured NiMo catalyst electrodeposited on 316L stainless steel for hydrogen generation in industrial applications. J Appl Electrochem 49:1227–1238. https://doi.org/10.1007/s10800-019-01361-8

    Article  CAS  Google Scholar 

  18. Diaz LA, Hnát J, Heredia N, Bruno MM, Viva FA, Paidar M, Corti HR, Bouzek K, Abuin GC (2016) Alkali doped poly (2,5-benzimidaole) membrane for alkaline water electrolysis: characterization and performance. J Power Source 312:128–136. https://doi.org/10.1016/j.jpowsour.2016.02.032

    Article  CAS  Google Scholar 

  19. Hnát J, Plevova M, Tufa RA, Zitka J, Paidar M, Bouzek K (2019) Development and testing of a novel catalyst-coated membrane with platinum-free catalysts for alkaline water electrolysis. Int J Hydrogen Energy 44(33):17493–17504. https://doi.org/10.1016/j.ijhydene.2019.05.054

    Article  CAS  Google Scholar 

  20. Rashidi AM, Amadeh A (2008) The effect of current density on the grain size of electrodeposited nanocrystalline nickel coatings. Surf Coat Technol 202:3772–3776. https://doi.org/10.1016/j.surfcoat.2008.01.018

    Article  CAS  Google Scholar 

  21. Yamasaki T, Schloβmacher P, Erlich K, Ogino Y (1998) Formation of amorphous electrodeposited Ni-W alloys and their nanocrystallization. Nanostruct Mater 10(3):375–388. https://doi.org/10.1016/S0965-9773(98)00078-6

    Article  CAS  Google Scholar 

  22. Paunovic M, Schlesinger M (1998) Fundamental of electrochemical deposition. Wiley, New York

    Google Scholar 

  23. Hall DS, Bock C, MacDougall R (2013) The electrochemistry of metallic nickel: oxides, hydroxides, hydrides and alkaline hydrogen evolution. J Electrochem Soc 160(3):F235–F243. https://doi.org/10.1149/2.026303jes

    Article  CAS  Google Scholar 

  24. Li X, Hao X, Abudula A, Guan G (2013) Nanostructures catalysts for electrochemical water splitting: current state and prospects. J Mater Chem 4:11973–12000. https://doi.org/10.1039/C6TA02334G

    Article  CAS  Google Scholar 

  25. Zhong C, Zhou Q, Li S, Cao L, Li J, Shen Z, Ma H, Liu J, Lu M, Zhang H (2019) Enhanced synergistic catalysis by a novel triple-phase interface design of NiO/Ru@Ni for the hydrogen evolution. J Mater Chem A 7:2344–2350. https://doi.org/10.1039/C8TA11171E

    Article  CAS  Google Scholar 

  26. Mahmood N, Yao Y, Zhang J-W, Pan L, Zhang X, Zou J-J (2018) Electrocatalysts for hydrogen evolution in alkaline electrolytes: Mechanism, challenges and prospective solutions. Adv Sci 5:1700464–1700487. https://doi.org/10.1002/advs.201700464

    Article  CAS  Google Scholar 

  27. Eliaz N, Sridhar TM, Gileadi E (2005) Sythesis and characterization of nickel tungsten alloys by electrodeposition. Electrochim Acta 50:2893–2904. https://doi.org/10.1016/j.electacta.2004.11.038

    Article  CAS  Google Scholar 

  28. Hong HS, Ahn SH, Choi J, Kim JY, Kim YH, Kim H-J, Jang JH, Kim H, Kim S-K (2015) High-activity electrodeposited NiW catalysts for hydrogen evolution in alkaline water electrolysis. Appl Surf Sci 349:629–635. https://doi.org/10.1016/j.apsusc.2015.05.040

    Article  CAS  Google Scholar 

  29. Lundstedt T, Seifert E, Abramo L, Thelin B, Nyström Å, Pettersen J, Bergman R (1998) Experimental design and optimization. Chemom Intell Lab Syst 42:3–40. https://doi.org/10.1016/S0169-7439(98)00065-3

    Article  CAS  Google Scholar 

  30. Faes A, Fuerbringer J-M, Mohamedi D, Hessler-Wyser A, Caboche G, Van Herle J (2011) Design of experiment approach applied to reducing and oxidizing tolerance of anode supported solid oxide fuel cell. Part I: Microstructure optimization. J Power Sources 196:7058–7069. https://doi.org/10.1016/j.jpowsour.2010.07.092

    Article  CAS  Google Scholar 

  31. Raghavendra CR, Basavarajappa S, Sogalad I (2019) Adhesive strength and tribological behaviour of Ni-nano-Al2O3 composite coating. Indian J Phys. https://doi.org/10.1007/s12648-019-01661-x

    Article  Google Scholar 

  32. Chainpairot A, Lothongkum G, Schuh CA, Boonyongmaneerat Y (2011) Corrosion of nanocrysalline Ni-W alloys in alkaline and anodic 3.5% NaCl solutions. Corros Sci 53:1066–1071. https://doi.org/10.1016/j.corsci.2010.12.001

    Article  CAS  Google Scholar 

  33. Tury B, Lakatos-Varsánnyi M, Roy S (2005) Ni-Co alloys plated by pulse currents. Surf Coat Technol 200:6713–6717. https://doi.org/10.1016/j.surfcoat.2005.10.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the grant of the Slovak Scientific Grant Agency VEGA (Ministerstvo školstva, vedy, výskumu a športu Slovenskej republiky) under the Contract Number VEGA 1/0792/17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Záchenská.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Záchenská, J., Ábel, M., Mičušík, M. et al. Nickel-based nanocoatings on 3D Ni foam for zero-gap alkaline water electrolysis. J Appl Electrochem 50, 959–971 (2020). https://doi.org/10.1007/s10800-020-01448-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-020-01448-7

Keywords

Navigation