Skip to main content
Log in

Facile Synthesis of Ni-Based Catalysts by Adsorption and Conversion of Metal Ions on Graphene Oxide for Methanol Oxidation

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Controllable synthesis of highly dispersed non-precious nanocatalysts is an attractive strategy to prepare efficient electrocatalysts for fuel cell applications. In this study, a facile synthesis of Ni-based mono- and bimetallic nanocatalysts has been developed by adsorption and conversion of metal ions on graphene oxide. The morphology and composition of Ni catalyst are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The electrochemical and electrocatalytic properties of Ni catalysts are studied using cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopic techniques. The catalytic performance can be improved easily by increasing the adsorption and deposition cycles of metal ions and changing the composition of precursor metal ions solution. This work will be of general interest to design efficient nanostructured catalysts and find ideal electrocatalysts for application with high catalytic performance and low price.

A facile synthesis of metallic nanocatalysts has been developed by adsorption and conversion of metal ions on graphene oxide

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.M. Liu, R.Z. Zhang, W. Chen, Graphene-supported nanoelectrocatalysts for fuel cells: Synthesis, properties, and applications. Chem. Rev. 114, 5117 (2014)

    Article  CAS  PubMed  Google Scholar 

  2. A.C. Chen, P. Holt-Hindle, Platinum-based nanostructured materials: Synthesis, properties, and applications. Chem. Rev. 110, 3767 (2010)

    Article  CAS  PubMed  Google Scholar 

  3. D.J. Chen, Y.Y.J. Tong, Irrelevance of carbon monoxide poisoning in the methanol oxidation reaction on a PtRu electrocatalyst. Angew. Chem. Int. Ed. 54, 9394 (2015)

    Article  CAS  Google Scholar 

  4. S. De, J.G. Zhang, R. Luque, N. Yan, Ni-based bimetallic heterogeneous catalysts for energy and environmental applications. Energy Environ. Sci. 9, 3314 (2016)

    Article  CAS  Google Scholar 

  5. R.M.A. Tehrani, S. Ab Ghani, The nanocrystalline nickel with catalytic properties on methanol oxidation in alkaline medium. Fuel Cells 9, 579 (2009)

    Article  CAS  Google Scholar 

  6. M. Guo, Y. Yu, J. Hu, Nickel nanoparticles for the efficient electrocatalytic oxidation of methanol in an alkaline medium. Electrocatalysis 8, 392 (2017)

    Article  CAS  Google Scholar 

  7. A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, V.W. Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. X.Q. Zhang, X.B. Cheng, Q. Zhang, Nanostructured energy materials for electrochemical energy conversion and storage: A review. J. Energy Chem. 25, 967 (2016)

    Article  Google Scholar 

  9. X.B. Fan, G.L. Zhang, F.B. Zhang, Multiple roles of graphene in heterogeneous catalysis. Chem. Soc. Rev. 44, 3023 (2015)

    Article  CAS  PubMed  Google Scholar 

  10. N. Seselj, C. Engelbrekt, J.D. Zhang, Graphene-supported platinum catalysts for fuel cells. Sci. Bull. 60, 864 (2015)

    Article  Google Scholar 

  11. F. Perreault, A.F. de Faria, M. Elimelech, Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 44, 5861 (2015)

    Article  CAS  PubMed  Google Scholar 

  12. W.J. Huang, H.T. Wang, J.G. Zhou, J. Wang, P.N. Duchesne, D. Muir, P. Zhang, N. Han, F.P. Zhao, M. Zeng, J. Zhong, C.H. Jin, Y.G. Li, S.T. Lee, H.J. Dai, Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene. Nat. Commun. 6 (2015)

  13. A.K. Das, R.K. Layek, N.H. Kim, D. Jung, J.H. Lee, Reduced graphene oxide (RGO)-supported NiCo2O4 nanoparticles: An electrocatalyst for methanol oxidation. Nanoscale 6, 10657 (2014)

    Article  CAS  PubMed  Google Scholar 

  14. Z.G. Wang, Y. Hu, W.L. Yang, M.J. Zhou, X. Hu, Facile one-step microwave-assisted route towards Ni nanospheres/reduced graphene oxide hybrids for non-enzymatic glucose sensing. Sensors 12, 4860 (2012)

    Article  CAS  PubMed  Google Scholar 

  15. R.L. Cui, J. Li, H. Huang, M.Y. Zhang, X.H. Guo, Y.A. Chang, M. Li, J.Q. Dong, B.Y. Sun, G.M. Xing, Novel carbon nanohybrids as highly efficient magnetic resonance imaging contrast agents. Nano Res. 8, 1259 (2015)

    Article  CAS  Google Scholar 

  16. J. Cho, K. Char, J.D. Hong, K.B. Lee, Fabrication of highly ordered multilayer films using a spin self-assembly method. Adv. Mater. 13, 1076 (2001)

    Article  CAS  Google Scholar 

  17. S. Song, H. Liu, X. Guo, N. Hu, Comparative electrochemical study of myoglobin loaded in different polyelectrolyte layer-by-layer films assembled by spin-coating. Electrochim. Acta 54, 5851 (2009)

    Article  CAS  Google Scholar 

  18. N.A.M. Barakat, M. Motlak, A.A. Elzatahry, K.A. Khalil, E.A.M. Abdelghani, NixCo1-x alloy nanoparticle-doped carbon nanofibers as effective non-precious catalyst for ethanol oxidation. Int. J. Hydrog. Energy 39, 305 (2014)

    Article  CAS  Google Scholar 

  19. X. Cui, W.L. Guo, M. Zhou, Y. Yang, Y.H. Li, P. Xiao, Y.H. Zhang, X.X. Zhang, Promoting effect of Co in NimCon (m + n = 4) bimetallic electrocatalysts for methanol oxidation reaction. ACS Appl. Mater. Interfaces 7, 493 (2015)

    Article  CAS  PubMed  Google Scholar 

  20. A.A. El-Shafei, Electrocatalytic oxidation of methanol at a nickel hydroxide/glassy carbon modified electrode in alkaline medium. J. Electroanal. Chem. 471, 89 (1999)

    Article  CAS  Google Scholar 

  21. M.A.A. Rahim, R.M.A. Hameed, M.W. Khalil, Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium. J. Power Sources 134, 160 (2004)

    Article  CAS  Google Scholar 

  22. L.L. Zhang, Z.G. Xiong, X.S. Zhao, A composite electrode consisting of nickel hydroxide, carbon nanotubes, and reduced graphene oxide with an ultrahigh electrocapacitance. J. Power Sources 222, 326 (2013)

    Article  CAS  Google Scholar 

  23. H.L. Wang, H.S. Casalongue, Y.Y. Liang, H.J. Dai, Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 132, 7472 (2010)

    Article  CAS  PubMed  Google Scholar 

  24. J.W. Lee, T. Ahn, D. Soundararajan, J.M. Ko, J.D. Kim, Non-aqueous approach to the preparation of reduced graphene oxide/α-Ni(OH)2 hybrid composites and their high capacitance behavior. Chem. Commun. 47, 6305 (2011)

    Article  CAS  Google Scholar 

  25. A.J. Bard, L.R. Faulkner, Electrochemical methods: Fundamentals and applications, second edn. (John Wiley & Sons, Inc., New York, 2001)

    Google Scholar 

  26. L. Zheng, J.F. Song, Electrocatalytic oxidation of methanol and other short chain aliphatic alcohols at Ni(II)-quercetin complex modified multi-wall carbon nanotube paste electrode. J. Solid State Electrochem. 14, 43 (2010)

    Article  CAS  Google Scholar 

  27. W. Wang, R. Li, X. Hua, R. Zhang, Methanol electrooxidation on glassy carbon electrode modified with bimetallic Ni(II)Co(II)salen complexes encapsulated in mesoporous zeolite A. Electrochim. Acta 163, 48 (2015)

    Article  CAS  Google Scholar 

  28. L.A. Hutton, M. Vidotti, A.N. Patel, M.E. Newton, P.R. Unwin, J.V. Macpherson, Electrodeposition of nickel hydroxide nanoparticles on boron-doped diamond electrodes for oxidative electrocatalysis. J. Phys. Chem. C 115, 1649 (2011)

    Article  CAS  Google Scholar 

  29. P.E. Sharel, D.Q. Liu, R.A. Lazenby, J. Sloan, M. Vidotti, P.R. Unwin, J.V. Macpherson, Electrodeposition of nickel hydroxide nanoparticles on carbon nanotube electrodes: Correlation of particle crystallography with electrocatalytic properties. J. Phys. Chem. C 120, 16059 (2016)

    Article  CAS  Google Scholar 

  30. Y.Y. Tong, C.D. Gu, J.L. Zhang, H. Tang, Y. Li, X.L. Wang, J.P. Tu, Urchin-like Ni-Co-P-O nanocomposite as novel methanol electro-oxidation materials in alkaline environment. Electrochim. Acta 187, 11 (2016)

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Basic Research Program of China (2016YFA0203200) and the National Natural Science Foundation of China (U1632113, 11705211, 21402202, and 11505191).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoyun Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Cui, R., Huang, H. et al. Facile Synthesis of Ni-Based Catalysts by Adsorption and Conversion of Metal Ions on Graphene Oxide for Methanol Oxidation. Electrocatalysis 9, 429–436 (2018). https://doi.org/10.1007/s12678-018-0457-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-018-0457-3

Keywords

Navigation