Skip to main content
Log in

Friction Stir Processing of Al 2124 Reinforced Graphene Metal Matrix Composites and Multi Characteristic Optimization Through Desirability Approach Integrated with ANN

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Multi-response optimization of composites was performed using the Taguchi-based desirability approach. Parameters, namely tool rotation speed (900 rpm, 1120 rpm, and 1400 rpm), feed rate (20 mm/min, 40 mm/min, and 60 mm/min), graphene nanoplates (GNPs) content (6.5 vol.%GNPs, 11 vol.%GNPs, and 17.4 vol.%GNPs) each at three levels were considered to optimize and enhance tensile strength and hardness using Taguchi’s L9 orthogonal array. Besides Taguchi’s analysis and the developed regression model, the artificial neural network was used to validate the results. A confirmation test was compared with the predicted value of composite desirability (\(d_G\)), and a comparison was drawn between experimental and predicted values. From ANOVA, results inferred that vol.%GNPs significantly impacts \(d_G\). The obtained tensile strength and hardness values effectively reflect the macrostructural, microstructural studies and XRD results. Fracture analysis of the confirmation sample showed no dimples but continuous deep ridges with sharp, torn edges indicating brittle failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Halil A, Yusuf O, and Mehmet T, Mater. Des. 27 (2006) 799. https://doi.org/10.1016/j.matdes.2005.01.024

    Article  CAS  Google Scholar 

  2. Hashim J, Looney L, and Hashmi M S J, J Mater Process Tech 92–93 (1999) 1. https://doi.org/10.1016/S0924-0136(99)00118-1

    Article  Google Scholar 

  3. Sergi A, Khan R H U, Irukuvarghula S, Meisnar M, Makaya A, and Attallah M M, Adv. Powder Technol. 33 (2022) 103411. https://doi.org/10.1016/j.apt.2021.103411

    Article  CAS  Google Scholar 

  4. Liu L, Li W, Tang Y, Shen B, and Hu W, Wear 266 (7), (2009) 733–738. https://doi.org/10.1016/j.wear.2008.08.009

    Article  CAS  Google Scholar 

  5. Feng W, Huimin L, and Bin Y, Mater. Charact. 54 (2005) 446. https://doi.org/10.1016/j.matchar.2005.01.011

    Article  CAS  Google Scholar 

  6. Dhanashekar M, and Senthil Kumar V S, Procedia Eng. 97 (2014) 412. https://doi.org/10.1016/j.proeng.2014.12.265

    Article  CAS  Google Scholar 

  7. Premnath A, Silicon 12 (2020) 665. https://doi.org/10.1007/s12633-019-00178-6

    Article  CAS  Google Scholar 

  8. Qianhao Z, Hongmei C, Jing Z, Ling W, Shujin C, and Yunxue J, J. Mater. Res. Technol. 14 (2021) 195. https://doi.org/10.1016/j.jmrt.2021.06.05

    Article  Google Scholar 

  9. Aafaq A A, and Jailani H S, Arab J Sci Eng 48 (2023) 3647. https://doi.org/10.1007/s13369-022-07247-w

    Article  CAS  Google Scholar 

  10. Sathiskumar R, Murugan N, Dinaharan I, and Vijay S J, Mater. Charact. 84 (2013) 16. https://doi.org/10.1016/j.matchar.2013.07.001

    Article  CAS  Google Scholar 

  11. Patil N A, Nasir M K B S, Pedapati S R, and Mamat O B, Materialwissenschaft und Werkstofftechnik 52 (2021) 1080. https://doi.org/10.1002/mawe.20200029

    Article  CAS  Google Scholar 

  12. Derringer G, and Suich R, J. Qual. Technol. 12 (1980) 214. https://doi.org/10.1080/00224065.1980.11980968

    Article  Google Scholar 

  13. Singaravel B, and Selvaraj T, J. Adv. Manuf. Syst. 15 (2016) 1. https://doi.org/10.1142/S0219686716500013

    Article  Google Scholar 

  14. Puviyarasan M, and Senthil Kumar V S, Arab J Sci Eng 40 (2015) 1733. https://doi.org/10.1007/s13369-015-1654-5

    Article  CAS  Google Scholar 

  15. Rejil C M, Dinaharan I, Vijay S J, and Murugan N, Mater. Sci. Eng. A 552 (2012) 336. https://doi.org/10.1016/j.msea.2012.05.049

    Article  CAS  Google Scholar 

  16. Sharma A, Sharma V M, and Paul J, T NONFERR METAL SOC 29 (2019) 2005. https://doi.org/10.1016/S1003-6326(19)65108-3

    Article  CAS  Google Scholar 

  17. Shunmugasundaram M, Nagarajan S M, Reddy Y, Chaurasiya P K, Kumar A, and Rajak U, Arab J Sci Eng 47 (2021) 8601. https://doi.org/10.1007/s13369-021-06352-6

    Article  CAS  Google Scholar 

  18. Pinar A M, Arab J Sci Eng 38 (2013) 705. https://doi.org/10.1007/s13369-012-0372-5

    Article  CAS  Google Scholar 

  19. Sivaiah P, and Chakradhar D, Measurement 134 (2019) 142. https://doi.org/10.1016/j.measurement.2018.10.067

    Article  ADS  Google Scholar 

  20. Gul M, Shah A N, Aziz U, Naveed Husnain M A, Mujtaba T K, Ahmad R, and Hanif M F, Energy Sources A: Recovery Util EnvironEff. 44 (1), (2022) 1019–1032. https://doi.org/10.1080/15567036.2019.163899

    Article  CAS  Google Scholar 

  21. Pant M, Singari R M, Arora P K, Moona G, and Kumar H, Mater. Res. Express 7 (2020) 115307. https://doi.org/10.1088/2053-1591/abc8bd

    Article  ADS  CAS  Google Scholar 

  22. KOLAKOT\(\dot{I}\), Aditya: J. Therm. Eng. 6(5), 712–723 (2020). doi: https://doi.org/10.18186/thermal.796761

  23. Balamugundan B, Karthikeyan L, and Senthilkumar V S, Procedia Eng. 38 (2012) 1276. https://doi.org/10.1016/j.proeng.2012.06.157

    Article  CAS  Google Scholar 

  24. Simar, A., Avettand-Fènoël, M.-N.: 7. Friction Stir Processing for Architectured Materials, pp. 195–229. Springer, (2019). doi: https://doi.org/10.1007/978-3-030-11942-3_7

  25. Komarasamy M, Kumar N, Tang Z, Mishra R S, and Liaw P K, Mater. Res. Lett. 3 (2015) 30. https://doi.org/10.1080/21663831.2014.958586

    Article  CAS  Google Scholar 

  26. Saini N, Pandey C, Thapliyal S, and Dwivedi D K, Silicon 10 (2018) 1979. https://doi.org/10.1007/s12633-017-9710-2

    Article  CAS  Google Scholar 

  27. Abdullah Aafaq A, and Siddhi Jailani H, Materials Today: Proceedings (2023). https://doi.org/10.1016/j.matpr.2023.04.323

    Article  Google Scholar 

  28. Sharma A, Sharma V M, and Paul J, J. Compos. Mater. 54 (2020) 45. https://doi.org/10.1177/002199831985942

    Article  ADS  CAS  Google Scholar 

  29. Ragu Nathan S, Suganeswaran K, Kumar S, Thangavel P, and Gobinath V K, J. Manuf. Process 90 (2023) 139. https://doi.org/10.1016/j.jmapro.2023.01.08

    Article  Google Scholar 

Download references

Acknowledgements

We the author acknowledge ‘Virtue Meta Solutions’ Hyderabad, Telangana, India for providing scanning electron microscope and optical microscope to make this research possible. Also, we the authors thank ‘ShiKag’s Engineering Labs’ Hyderabad, Telangana, India for enabling the use of UTM and Viker’s microhardness tester for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Siddhi Jailani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aafaq, A.A., Jailani, H.S. Friction Stir Processing of Al 2124 Reinforced Graphene Metal Matrix Composites and Multi Characteristic Optimization Through Desirability Approach Integrated with ANN. Trans Indian Inst Met (2024). https://doi.org/10.1007/s12666-024-03270-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12666-024-03270-7

Keywords

Navigation