Skip to main content
Log in

Multi-response Optimization of Process Parameters in Fabricating Al 2124/GO Metal Matrix Composite by Friction Stir Processing

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Al 2124 composites are used in aerospace and automotive applications. Foreseeing its applications, it is necessary to examine the properties of Al 2124-reinforced graphene oxide (GO) synthesized by using friction stir processing (FSP). Enhanced properties of metal matrix composites (MMC) are highly dependent on the selection of processing parameters in FSP. Graphene oxide-reinforced MMC were fabricated using processing variants of tool geometry, tool rotation speed, tool transverse speed and quantity of GO using Taguchi L9 orthogonal array. The processing variants were optimized using desirability functional analysis (DFA) by considering multiple characteristic performance involving tensile strength and hardness. From the achieved results, optimal parameters have been identified through the highest value of composite desirability (\(d_G\)) acquired from DFA. Through Taguchi analysis, it was found that tool geometry had the least significance contrary to other factors. The predicted data closely matches the experimental results. Analysis of variance showed that the quantity of GO contributes significantly contrary to other factors. Optical microscopy and scanning electron microscopy (SEM) for the confirmation test showed homogeneous dispersion of a few-layer GO stacks throughout the metal matrix, while fracture studies using SEM showed small dimples indicating plastic deformation capability of Al 2124/GO composite. Besides, almost all fabricated composites were defect-free and also showed homogeneous dispersion of few-layer GO stack in the metal matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Boyer, R.: Aircraft materials. In: Buschow, K.H.J.; Cahn, R.W.; Flemings, M.C.; Ilschner, B.; Kramer, E.J.; Mahajan, S.; Veyssière, P. (eds.) Encyclopedia of Materials: Science and Technology, pp. 66–73. Elsevier, Oxford (2001). https://doi.org/10.1016/B0-08-043152-6/00013-9

  2. Kaufman, J.G.: Aluminum Alloys, vol. 4. Wiley, New York (2002). https://doi.org/10.1002/9780470172551.ch4

    Book  Google Scholar 

  3. Smaga, M.; Walther, F.; Eifler, D.: Monotonic and cyclic deformation behaviour of the SiC particle-reinforced aluminium matrix composite AMC225xe. Adv. Eng. Mater. 12(4), 262–268 (2010). https://doi.org/10.1002/adem.200900345

    Article  Google Scholar 

  4. Stojanović, B.; Ivanović, L.: Application of aluminium hybrid composites in automotive industry. Tehnicki Vjesnik 22(1), 247–251 (2015). https://doi.org/10.17559/TV-20130905094303

    Article  Google Scholar 

  5. Falsafi, J.; Rosochowska, M.; Jadhav, P.; Tricker, D.: Lower cost automotive piston from 2124/SiC/25p metal-matrix composite. SAE Int. J. Eng. 10(4), 1984–1992 (2017). https://doi.org/10.4271/2017-01-1048

    Article  Google Scholar 

  6. Karamış, M.B.; Alper Cerit, A.; Selçuk, B.; Nair, F.: The effects of different ceramics size and volume fraction on wear behavior of al matrix composites (for automobile cam material). Wear 289, 73–81 (2012). https://doi.org/10.1016/j.wear.2012.04.012

    Article  Google Scholar 

  7. von Hehl, A.; Krug, P.: Aluminum and Aluminum Alloys, vol. 2, pp. 49–112. Wiley (2013). https://doi.org/10.1002/9783527649846.ch2

    Book  Google Scholar 

  8. Boswell, B.; Islam, M.N.; Pramanik, A.: Optimum parameters for machining metal matrix composite. In: Yang, G.-C., Ao, S.-I., Gelman, L. (eds.) Transactions on Engineering Technologies, pp. 43–57. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-017-8832-8_4

    Chapter  Google Scholar 

  9. Avouris, P.; Dimitrakopoulos, C.: Graphene: synthesis and applications. Mater. Today 15(3), 86–97 (2012). https://doi.org/10.1016/S1369-7021(12)70044-5

    Article  Google Scholar 

  10. Caffo, M.; Merlo, L.; Daniele, M.O.: Graphene science handbook applications and industrialization. In: Aofkhazraei, M., Ali, N., Milne, W.I., Ozkan, C.S. (eds.) Biomedical Applications of Graphene, 1st edn, pp. 41–56. CRC Press, Boca Raton (2016)

    Google Scholar 

  11. Jiang, L.; Fan, G.; Li, Z.; Kai, X.; Zhang, D.; Chen, Z.; Humphries, S.; Heness, G.; Yeung, W.Y.: An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder. Carbon 49(6), 1965–1971 (2011). https://doi.org/10.1016/j.carbon.2011.01.021

    Article  Google Scholar 

  12. Luo, H.; Sui, Y.; Qi, J.; Meng, Q.; Wei, F.; He, Y.: Mechanical enhancement of copper matrix composites with homogeneously dispersed graphene modified by silver nanoparticles. J. Alloys Compd. 729, 293–302 (2017). https://doi.org/10.1016/j.jallcom.2017.09.102

    Article  Google Scholar 

  13. Liu, X.; Li, J.; Sha, J.; Liu, E.; Li, Q.; He, C.; Shi, C.; Zhao, N.: In-situ synthesis of graphene nanosheets coated copper for preparing reinforced aluminum matrix composites. Mater. Sci. Eng. A 709(August 2017), 65–71 (2018). https://doi.org/10.1016/j.msea.2017.10.030

    Article  Google Scholar 

  14. Liu, G.; Zhao, N.; Shi, C.; Liu, E.; He, F.; Ma, L.; Li, Q.; Li, J.; He, C.: In-situ synthesis of graphene decorated with nickel nanoparticles for fabricating reinforced 6061Al matrix composites. Mater. Sci. Eng. A 699, 185–193 (2017). https://doi.org/10.1016/j.msea.2017.05.084

    Article  Google Scholar 

  15. Chen, Y.; Zhang, X.; Liu, E.; He, C.; Han, Y.; Li, Q.; Nash, P.; Zhao, N.: Fabrication of three-dimensional graphene/Cu composite by in-situ CVD and its strengthening mechanism. J. Alloys Compd. 688, 69–76 (2016). https://doi.org/10.1016/j.jallcom.2016.07.160

    Article  Google Scholar 

  16. Li, D.; Ye, Y.; Liao, X.; Qin, Q.H.: A novel method for preparing and characterizing graphene nanoplatelets/aluminum nanocomposites. Nano Res. 11(3), 1642–1650 (2018). https://doi.org/10.1007/s12274-017-1779-9

    Article  Google Scholar 

  17. Fadavi Boostani, A.; Tahamtan, S.; Jiang, Z.Y.; Wei, D.; Yazdani, S.; Azari Khosroshahi, R.; Taherzadeh Mousavian, R.; Xu, J.; Zhang, X.; Gong, D.: Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles. Compos. Part A Appl. Sci. Manuf. 68, 155–163 (2015). https://doi.org/10.1016/j.compositesa.2014.10.010

    Article  Google Scholar 

  18. El-Ghazaly, A.; Anis, G.; Salem, H.G.: Effect of graphene addition on the mechanical and tribological behavior of nanostructured AA2124 self-lubricating metal matrix composite. Compos. Part A Appl. Sci. Manuf. 95, 325–336 (2017). https://doi.org/10.1016/j.compositesa.2017.02.006

    Article  Google Scholar 

  19. Narimani, M.; Lotfi, B.; Sadeghian, Z.: Investigating the microstructure and mechanical properties of Al-TiB\(_2\) composite fabricated by friction stir processing (FSP). Mater. Sci. Eng. A 673, 436–442 (2016). https://doi.org/10.1016/j.msea.2016.07.086

    Article  Google Scholar 

  20. Asadi, P.; Faraji, G.; Besharati, M.K.: Producing of AZ91/SiC composite by friction stir processing (FSP). Int. J. Adv. Manuf. Technol. 51(1), 247–260 (2010). https://doi.org/10.1007/s00170-010-2600-z

    Article  Google Scholar 

  21. Huang, G.; Wu, J.; Hou, W.; Shen, Y.: Microstructure, mechanical properties and strengthening mechanism of titanium particle reinforced aluminum matrix composites produced by submerged friction stir processing. Mater. Sci. Eng. A 734, 353–363 (2018). https://doi.org/10.1016/j.msea.2018.08.015

    Article  Google Scholar 

  22. Sahraeinejad, S.; Izadi, H.; Haghshenas, M.; Gerlich, A.P.: Fabrication of metal matrix composites by friction stir processing with different particles and processing parameters. Mater. Sci. Eng. A 626, 505–513 (2015). https://doi.org/10.1016/j.msea.2014.12.077

    Article  Google Scholar 

  23. Bauri, R.; Yadav, D.; Kumar, C.N.S.; Ram, G.D.J.: Optimized process parameters for fabricating metal particles reinforced 5083 Al composite by friction stir processing. Data Brief 5, 309–313 (2015). https://doi.org/10.1016/j.dib.2015.09.006

    Article  Google Scholar 

  24. Rashad, M.; Pan, F.; Tang, A.; Asif, M.; She, J.; Gou, J.; Mao, J.; Hu, H.: Development of magnesium-graphene nanoplatelets composite. J. Compos. Mater. 49(3), 285–293 (2015). https://doi.org/10.1177/0021998313518360

    Article  Google Scholar 

  25. Puviyarasan, M.; Senthil Kumar, V.S.: An experimental investigation for multi-response optimization of friction stir process parameters during fabrication of AA6061/B\(_4\)Cp composites. Arab. J. Sci. Eng. 40(6), 1733–1741 (2015). https://doi.org/10.1007/s13369-015-1654-5

    Article  Google Scholar 

  26. Eftekharinia, H.; Amadeh, A.A.; Khodabandeh, A.; Paidar, M.: Microstructure and wear behavior of AA6061/SiC surface composite fabricated via friction stir processing with different pins and passes. Rare Met. 39(4), 429–435 (2020). https://doi.org/10.1007/s12598-016-0691-x

    Article  Google Scholar 

  27. Elangovan, K.; Balasubramanian, V.: Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminium alloy. Mater. Sci. Eng. A 459(1), 7–18 (2007). https://doi.org/10.1016/j.msea.2006.12.124

    Article  Google Scholar 

  28. Elangovan, K.; Balasubramanian, V.: Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in aa6061 aluminium alloy. Mater. Des. 29(2), 362–373 (2008). https://doi.org/10.1016/j.matdes.2007.01.030

    Article  Google Scholar 

  29. Elangovan, K.; Balasubramanian, V.; Valliappan, M.: Influences of tool pin profile and axial force on the formation of friction stir processing zone in AA6061 aluminium alloy. Int. J. Adv. Manuf. Technol. 38, 285–295 (2007). https://doi.org/10.1007/s00170-007-1100-2

    Article  Google Scholar 

  30. Sharma, V.; Prakash, U.; Kumar, B.V.M.: Surface composites by friction stir processing: a review. J. Mater. Process. Technol. 224, 117–134 (2015). https://doi.org/10.1016/j.jmatprotec.2015.04.019

    Article  Google Scholar 

  31. Shunmugasundaram, M.; Nagarajan, S.M.; Reddy, Y.; Chaurasiya, P.K.; Kumar, A.; Rajak, U.: An experimental study and joining parameters optimization of friction stir weld butt joint by Taguchi approach to maximize the mechanical properties. Arab. J. Sci. Eng. (2021). https://doi.org/10.1007/s13369-021-06352-6

    Article  Google Scholar 

  32. Pinar, A.M.: Optimization of process parameters with minimum surface roughness in the pocket machining of AA5083 aluminum alloy via Taguchi method. Arab. J. Sci. Eng. 38(3), 705–714 (2013). https://doi.org/10.1007/s13369-012-0372-5

    Article  Google Scholar 

  33. Sivaiah, P.; Chakradhar, D.: Modeling and optimization of sustainable manufacturing process in machining of 17–4 ph stainless steel. Measurement 134, 142–152 (2019). https://doi.org/10.1016/j.measurement.2018.10.067

    Article  Google Scholar 

  34. Balamugundan, B.; Karthikeyan, L.; Senthilkumar, V.S.: Multi characteristics optimization during milling of friction stir processed glass fiber reinforced plastic composites. Proc. Eng. 38, 1276–1285 (2012). https://doi.org/10.1016/j.proeng.2012.06.157

    Article  Google Scholar 

  35. Kondaiah, V.V.; Pavanteja, P.; Afzal Khan, P.; Anannd Kumar, S.; Dumpala, R.; Ratna Sunil, B.: Microstructure, hardness and wear behavior of AZ31 Mg alloy-fly ash composites produced by friction stir processing. Mater. Today Proc. 4(6), 6671–6677 (2017). https://doi.org/10.1016/j.matpr.2017.06.441

    Article  Google Scholar 

  36. Sharma, S.; Handa, A.; Singh, S.S.; Verma, D.: Influence of tool rotation speeds on mechanical and morphological properties of friction stir processed nano hybrid composite of MWCNT-graphene-AZ31 magnesium. J. Magn. Alloys 7(3), 487–500 (2019). https://doi.org/10.1016/j.jma.2019.07.001

    Article  Google Scholar 

  37. Simar, A.; Avettand-Fènoël, M.-N.: 7. In: Estrin, Y., Bréchet, Y., Dunlop, J., Fratzl, P. (eds.) Friction Stir Processing for Architectured Materials, pp. 195–229. Springer, New York (2019). https://doi.org/10.1007/978-3-030-11942-3_7

  38. Komarasamy, M.; Kumar, N.; Tang, Z.; Mishra, R.S.; Liaw, P.K.: Effect of microstructure on the deformation mechanism of friction stir-processed Al\(_{0.1}\)CoCrFeNi high entropy alloy. Mater. Res. Lett. 3(1), 30–34 (2015). https://doi.org/10.1080/21663831.2014.958586

    Article  Google Scholar 

  39. Krishnan, K.N.: On the formation of onion rings in friction stir welds. Mater. Sci. Eng. A 327(2), 246–251 (2002). https://doi.org/10.1016/S0921-5093(01)01474-5

    Article  Google Scholar 

  40. Bahrami, M.; Besharati Givi, M.K.; Dehghani, K.; Parvin, N.: On the role of pin geometry in microstructure and mechanical properties of aa7075/sic nano-composite fabricated by friction stir welding technique. Mater. Des. 53, 519–527 (2014). https://doi.org/10.1016/j.matdes.2013.07.049

    Article  Google Scholar 

  41. Kavimani, V.; Prakash, K.S.; Thankachan, T.: Influence of machining parameters on wire electrical discharge machining performance of reduced graphene oxide/magnesium composite and its surface integrity characteristics. Compos. B Eng. 167, 621–630 (2019). https://doi.org/10.1016/j.compositesb.2019.03.031

    Article  Google Scholar 

  42. Sharma, A.; Sharma, V.M.; Sahoo, B.; Pal, S.K.; Paul, J.: Effect of multiple micro channel reinforcement filling strategy on Al6061-graphene nanocomposite fabricated through friction stir processing. J. Manuf. Process. 37, 53–70 (2019). https://doi.org/10.1016/j.jmapro.2018.11.009

    Article  Google Scholar 

  43. Sharma, A.; Sharma, V.M.; Paul, J.: A comparative study on microstructural evolution and surface properties of graphene/cnt reinforced al6061-sic hybrid surface composite fabricated via friction stir processing. Trans. Nonferrous Met. Soc. China 29(10), 2005–2026 (2019). https://doi.org/10.1016/S1003-6326(19)65108-3

    Article  Google Scholar 

  44. Rathee, S.; Maheshwari, S.; Siddiquee, A.N.; Srivastava, M.: A review of recent progress in solid state fabrication of composites and functionally graded systems via friction stir processing. Crit. Rev. Solid State Mater. Sci. 43(4), 334–366 (2018). https://doi.org/10.1080/10408436.2017.1358146

    Article  Google Scholar 

Download references

Funding

This study was not funded by any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Siddhi Jailani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aafaq, A.A., Jailani, H.S. Multi-response Optimization of Process Parameters in Fabricating Al 2124/GO Metal Matrix Composite by Friction Stir Processing. Arab J Sci Eng 48, 3647–3664 (2023). https://doi.org/10.1007/s13369-022-07247-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07247-w

Keywords

Navigation