Skip to main content

Advertisement

Log in

Effect of Using a Copper Insert on Stability and Energy Balance in an Aluminum Production Cell

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Roughly half of the electrical energy input to a modern Hall–Héroult cell for the aluminum (Al) production is lost as heat. Naturally, significant efforts are currently directed toward increasing the thermal efficiency of the cell by a variety of means. In this work, a slice thermoelectric model of a Hall–Héroult cell was developed for a conventional base model (insert-free collector bar) as well as for a copper (Cu) insert model (cylindrical copper inserts in the steel collector bar). Finite element method-based simulations were carried out to determine the components of voltage drops, steady-state ledge profile, cell stability and the overall heat balance. Comparison of the specific energy consumption (SEC) and the cell current in all cases highlighted the advantages of copper insert collector bar assembly over the insert-free, base case. The use of a Cu insert can increase the plant productivity by over 5% at the same SEC as in the base case. Moreover, with the introduction of an insert, an increase in productivity with a concomitant decrease in the SEC could be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

Q :

Ohmic heat source (W/m3)

J :

Current density (A/m2)

E :

Electric field strength (V/m)

σ :

Electrical conductivity (S/m)

\(\rho\) :

Density (kg/m3)

\(C_{p}\) :

Heat capacity (J/kg/K)

T :

Temperature (K)

t :

Time (s)

k :

Thermal conductivity (J/ m/K)

Q L :

Heat loss (J)

h :

Heat transfer coefficient (W/m2/K)

A :

Area (m2)

T s :

Temperature of surface (K)

T a :

Temperature of surrounding atmosphere (K)

L :

Characteristic length (m)

A * :

Cross-sectional area of electrolyte under anode (m2)

P :

Wetted perimeter (m)

U * :

Characteristic velocity (m/s)

K eff :

Effective thermal conductivity (J/m/K)

SEC:

Specific energy consumption (kWh)

U :

Cell potential (V)

CE:

Current efficiency

References

  1. Grjotheim K, Kvande H, and Zhuxian Q, Jom, 47 (1995) 32.

    Article  CAS  Google Scholar 

  2. Kvande H: J. Occup. Environ. Med.,56 (2014) S2.

    Article  CAS  Google Scholar 

  3. G.P. Tarcy, H. Kvande, and A. Tabereaux: Jom63, (2011) 101.

    Article  Google Scholar 

  4. K.D. Barthol and K. Free: Light Met. 2013, (2013) 15.

    Google Scholar 

  5. Caratini, Y, Bardet, B, Bécasse, S, Blais, A:1

  6. Kvande H, and Drabløs P.A. : J. Occup. Environ. Med.56, (2014) S23

    Article  CAS  Google Scholar 

  7. Prasad S.: J. Braz. Chem. Soc.11, (2000) 245.

    Article  CAS  Google Scholar 

  8. Keniry J.: JOM53, (2001) 43.

    Article  CAS  Google Scholar 

  9. Welch B.J.: JOM51, (1999) 24.

    Article  CAS  Google Scholar 

  10. A. Multi-authors: US Energy Requirements for Aluminum Production, (2007).

  11. Wang Q, Li B, He Z, and Feng N: Metall. Mater. Trans. B45, (2014) 272.

    Article  CAS  Google Scholar 

  12. Hua J, Rudshaug M, Droste C, Jorgensen R, and Giskeodegard N.-H, Metall. Mater. Trans. B, (2018) 1.

  13. Feiya Y, Dupuis M, Jianfei Z, and Shaoyong R, TMS Light Met., (2013) 537.

  14. Taylor M, Zhang W, Wills V, and Schmid S: Chem. Eng. Res. Des.74, (1996) 913.

    Article  CAS  Google Scholar 

  15. Kvande H and Haupin W: Jom52, (2000) 31.

    Article  CAS  Google Scholar 

  16. Kurenkov A., Thess A., Zikanov O, Segatz M, Droste C, and Vogelsang D: Magnetohydrodynamics40, (2004) 203.

    Article  Google Scholar 

  17. Modestov M, Bychkov V, Brodin G, Marklund M, and Brandenburg A, (2014), p. 1.

  18. Richard D, Goulet P, Trempe O, Dupuis M, and Fafard M, Essent, Readings Light Met. Electrode Technol Alum Prod, (2013) 543.

  19. Beeler R: in TMS Light Metals, (2003).

  20. von Kaenel R, and Antille J: in Light Metals 2011, (2011) 569.

    Google Scholar 

  21. Gagnon M, Goulet P, Beeler R, Ziegler D, and Fafard M, Light Met, (2013) 621.

  22. Das S, Morsi Y, and Brooks G: Jom66, (2014) 235.

    Article  Google Scholar 

  23. Blais M, Désilets M, and Lacroix M: Appl. Therm. Eng.58, (2013) 439.

    Article  CAS  Google Scholar 

  24. Gupta A, Jha A, Sahoo M, Jinil J, and Nayak J.P, Int. Comm. Study Bauxite, Alumina Alum., (2015) 1.

  25. Bojarevics V: in Light Metals 2016, Springer, (2016) 933.

    Google Scholar 

  26. Singh R, Das K, Mishra A.K, and Kalo N, Trans. Indian Inst. Met., (2016) 1.

  27. Jianping P, Yang S, Yuezhong D, Yaowu W, and Naixiang F: JOM69, (2017) 1767.

    Article  Google Scholar 

  28. R. Zhao, L. Gosselin, M. Fafard, and D.P. Ziegler: Appl. Therm. Eng.54, (2013) 212.

    Article  CAS  Google Scholar 

  29. Jessen S.W, Technical University of Denmark, (2008).

  30. Dry Impervious Material, http://beixing.enb2b.pedeall.com/company/product_info/177/2262.

  31. Multiphysics C, COMSOL Multiphysics Mater. Libr. URL http//www. comsol. com.

  32. Bidwell C.C, and Hogan C.L: J. Appl. Phys.18, (1947), 776.

    Article  CAS  Google Scholar 

  33. Edwards J.D, Taylor C.S, Cosgrove L.A, and Russell A.S: J. Electrochem. Soc.100, (1953) 508.

    Article  CAS  Google Scholar 

  34. Gheribi A.E, Salanne M, and Chartrand P: J. Phys. Chem. C120, (2016) 22873.

    Article  CAS  Google Scholar 

  35. Gupta A, and Namboothiri S, Trans. Indian Inst. Met., DOI:https://doi.org/10.1007/s12666-016-0954-0.

  36. Incropera F P, and DeWitt D P, Fundamentals of Heat and Mass Transfer, FIRST., John Wiley & Sons, (2013).

  37. Moreau R, and Evans J.W: J. Electrochem. Soc.131, 1984 2251.

    Article  CAS  Google Scholar 

  38. Senouci A, Zaidi H, Frene J, Bouchoucha A, and Paulmier D: Appl. Surf. Sci.144-145, (1999) 287.

    Article  Google Scholar 

  39. Gusberti V, Severo D.S, Welch B.J, and Skyllas-Kazacos M: Light Met. 2012, (2012) 929.

    Google Scholar 

  40. Sørlie M, and Øye H.A: J. Appl. Electrochem.19, (1989) 580.

    Article  Google Scholar 

  41. Zikanov O, Thess A, Davidson P.A, and Ziegler D.P: Metall. Mater. Trans. B31, (2000) 1541.

    Article  Google Scholar 

  42. Bojarevics V, and Pericleous K, Miner. Met. Mater. Soc. 420 Commonw. Dr., P. O. Box 430 Warrendale PA 15086 USA.[np]. 14–18 Feb.

  43. Sun M, Li B, Li L, and Peng J, in: TMS Annual Meeting & Exhibition, (2018) 565.

  44. Dupuis M, CIM Light Met, (2001) 3.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipti Ranjan Parida.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been carried out at IIT Bhubaneswar under the supervision of Dr. Randhir Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parida, D.R., Singh, R., Kalo, N. et al. Effect of Using a Copper Insert on Stability and Energy Balance in an Aluminum Production Cell. Trans Indian Inst Met 74, 487–498 (2021). https://doi.org/10.1007/s12666-020-02182-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02182-6

Keywords

Navigation