Skip to main content
Log in

Cathode Characterization with Steel and Copper Collector Bars in an Electrolytic Cell

  • Published:
JOM Aims and scope Submit manuscript

Abstract

This article presents finite-element method simulation results of current distribution in an aluminum electrolytic cell. The model uses one quarter of the cell as a computational domain assuming longitudinal (along the length of the cell) and transverse axes of symmetries. The purpose of this work is to closely examine the impact of steel and copper collector bars on the cell current distribution. The findings indicated that an inclined steel collector bar (φ = 1°) can save up to 10–12 mV from the cathode lining in comparison to a horizontal 100 mm × 150-mm steel collector bar. It is predicted that a copper collector bar has a much higher potential of saving cathode voltage drop (CVD) and has a greater impact on the overall current distribution in the cell. A copper collector bar with 72% of cathode length and size of 100 mm × 150 mm is predicted to have more than 150 mV savings in cathode lining. In addition, a significant improvement in current distribution over the entire cathode surface is achieved when compared with a similar size of steel collector bar. There is a reduction of more than 70% in peak current density value due to the higher conductivity of copper. Comparisons between steel and copper collector bars with different sizes are discussed in terms CVD and current density distribution. The most important aspect of the findings is to recognize the influence of copper collector bars on the current distribution in molten metal. Lorentz fields are evaluated at different sizes of steel and copper collector bars. The simulation predicts that there is 50% decrease in Lorentz force due to the improvement in current distribution in the molten metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. T. Sele, Metall. Trans. B 8, 613 (1977).

    Article  Google Scholar 

  2. N. Urata, Light Metals, ed. H.O. Bohner (Warrendale: TMS, 1985), pp. 581–591.

    Google Scholar 

  3. R.J. Moreau and D. Ziegler, Light Metals, ed. R.E. Miller (Warrendale: TMS, 1986), pp. 359–364.

    Google Scholar 

  4. M. Dupuis and V. Bojarevics, Light Metals, ed. T.J. Galloway (Warrendale: TMS, 2006), pp. 341–346.

    Google Scholar 

  5. S. Das, G. Brooks, and Y. Morsi, Metall. Trans. B 42, 243 (2011).

    Article  Google Scholar 

  6. M. Li and J.M. Zhou, J. J. Cent. South Univ. Tech. (Engl. Ed.) 15, 271 (2008).

    Article  Google Scholar 

  7. D. Billinghurst, B. Paul, G.P. Bearne, and I.A. Coad, Light Metals, ed. T.J. Galloway (Warrendale: TMS, 2006), pp. 255–257.

    Google Scholar 

  8. S.W.T. Kuan, D. Jacquet, T. Tomasino, and C.C. De Wit, Light Metals, ed. D.H. DeYoung (Warrendale: TMS, 2008), pp. 397–402.

    Google Scholar 

  9. V. Bojarevics and K. Pericleous, Light Metals, ed. G. Bearne (Warrendale: TMS, 2009), pp. 569–574.

    Google Scholar 

  10. H. Sun, O. Zikanov, and D.P. Ziegler, Fluid Dyn. Res. 35, 255 (2004).

    Article  MATH  Google Scholar 

  11. R. Von Kaenel and J. Antille, Light Metals, ed. S.J. Lindsay (Warrendale: TMS, 2011), pp. 569–574.

    Google Scholar 

  12. M. Gagnon, P. Goulet, R. Beeler, D. Ziegler, and M. Fafard, Light Metals, ed. Barry Sadler (Warrendale: TMS, 2013), pp. 621–626.

    Google Scholar 

  13. K. Vasshaug, T. Foosnas, G.M. Haarberg, A.P. Ratvik, and E. Skybakmoen, Light Metals, ed. G. Bearne (Warrendale: TMS, 2009), pp. 1111–1116.

    Google Scholar 

  14. Y. Sato, P. Patel, and P. Lavoie, Light Metals, ed. J.A. Johnson (Warrendale: TMS, 2010), pp. 817–822.

    Google Scholar 

  15. A.T. Tabereaux, J.H. Brown, I.J. Eldridge, and T.R. Alcorn, Light Metals, ed. C.E. Eckert (Warrendale: TMS, 1999), pp. 187–192.

    Google Scholar 

  16. H.A. Øye and B.J. Welch, JOM 50, 18 (1998).

    Article  Google Scholar 

  17. D. Lombard, T. Beheregaray, B. Feve, and J.M. Jolas, Light Metals, ed. B.J. Welch (Warrendale: TMS, 1998), pp. 653–658.

    Google Scholar 

  18. J.M. Dreyfus and L. Joncourt, Light Metals, ed. C.E. Eckert (Warrendale: TMS, 1999), pp. 199–206.

    Google Scholar 

  19. Q. Xiquan, L. Dingxiong, M. Shaoxian, W. Dequan, and M. Jihong, Light Metals, ed. G. Bearne (Warrendale: TMS, 2009), pp. 575–580.

    Google Scholar 

  20. E.D. Tarapore, JOM 34, 50 (1982).

    Article  Google Scholar 

  21. X.P. Li, J. Li, Y.Q. Lai, J. Chen, Z.L. Gao, and Y.X. Liu, J. Cent. South Univ. Tech. (Engl. Ed.) 17, 62 (2010).

    Article  Google Scholar 

  22. D. Kacprzak, M. Gustafsson, L. Li, and M. Taylor, Light Metals, ed. T.J. Galloway (Warrendale: TMS, 2006), pp. 367–369.

    Google Scholar 

  23. M. Dupuis, Light Metals, ed. S.J. Lindsay (Warrendale: TMS, 2011), pp. 519–524.

    Google Scholar 

  24. R.F. Boivin, P. Desclaux, and J.P.R. Huni, Light Metals, ed. H.O. Bohner (Warrendale: TMS, 1985), pp. 625–635.

    Google Scholar 

  25. M. Sørlie and H. Gran, Light Metals, ed. E. Cutshall (Warrendale: TMS, 1992), pp. 779–787.

    Google Scholar 

  26. L. Jie, L. Wei, L. Yanqing, W. Zhigang, and L. Yexiang, Light Metals, ed. M. Sørlie (Warrendale: TMS, 2007), pp. 465–470.

    Google Scholar 

  27. M. Dupuis and W. Haupin, Light Metals, ed. P.N. Crepeau (Warrendale: TMS, 2003), pp. 255–262.

    Google Scholar 

  28. P. Rafiei, F. Hiltmann, M. Hyland, B. James, and B. Welch, Light Metals, ed. J. Anjier (Warrendale: TMS, 2001), pp. 747–752.

    Google Scholar 

  29. O. Zikanov, A. Thess, P.A. Davidson, and D.P. Ziegler, Metall. Trans. B 31, 1541 (2000).

    Article  Google Scholar 

  30. M.A. Doheim, A.M. El-Kersh, N.A. Kotb, M.M. Ali, and M.O. Ibraheim, Light Metals, ed. D.H. DeYoung (Warrendale: TMS, 2008), pp. 419–424.

    Google Scholar 

  31. J.F. Gerbeau, T. Lelievre, C. Le Bris, N. Ligonesche, and C. Vanvoren, Light Metals, ed. W. Schneider (Warrendale: TMS, 2002), pp. 483–487.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrat Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S., Morsi, Y. & Brooks, G. Cathode Characterization with Steel and Copper Collector Bars in an Electrolytic Cell. JOM 66, 235–244 (2014). https://doi.org/10.1007/s11837-013-0847-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0847-1

Keywords

Navigation