Skip to main content
Log in

A Study on Yield Function for Ti–6Al–4V Titanium Alloy Sheets at Elevated Temperatures

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Currently, the finite element (FE) method simulation technique is being widely applied to optimize the forming process. To achieve high-accuracy FE simulation results, the identification of material properties and deformation characteristics such as yield criteria is important. In this study, characterisation of plastic deformation behavior of Ti–6Al–4V titanium alloy using anisotropic sheets were carried out using, biaxial tensile tests at 600 °C with a cruciform specimen. The test was performed until the specimen was broken down. The experimental results for the yield locus were first compared with other theoretical models to show the mismatch of the conventional function. A new yield function was then proposed in this study to describe not only the anisotropic but also the asymmetric behavior between the tension and compression of Ti–6Al–4V titanium alloy sheets using a fitting equation to determine the material constants of the yield function. Finally, yield loci at other elevated temperatures were obtained based on the relationship between tension yield stress and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Davies D P, and Jenkins S L, Mater Des 33 (2012) 254.

    Article  Google Scholar 

  2. Odenberger E L, Hertzman J, Thilderkvist P, Merklein M, Kuppert A, Stöhr T, Lechler J and Oldenburg M, Int J Mater Form 6 (2013) 391.

    Article  Google Scholar 

  3. Kotkunde N, Deole A D, Gupta A K, and Singh S K, Mater Des 55 (2014) 999.

    Article  Google Scholar 

  4. Amino H, Lu Y, Ozawa S, Fukuda K, and Maki T, in Proc Conf Advanced Techniques of Plasticity (2002), p 1015.

  5. Fan G Q, Sun F T, Meng X G, Gao L, and Tong G Q, Int J Adv Manuf Technol 49 (2010) 941.

    Article  Google Scholar 

  6. Palumbo G, and Brandizzi M, Mater Des 40 (2012) 43.

    Article  Google Scholar 

  7. Nguyen D-T, Seung-Han Y, Dong-Won J, Tae-Hoon C, and Young-Suk K, Steel Res Int 7 (2011) 795.

    Google Scholar 

  8. Nguyen D T, Kim Y S, and Jung D W, Met Mater Int 18 (2012) 583.

    Article  Google Scholar 

  9. Yang T S, and Shyu R F, J Mech Sci Technol 21 (2007) 1585.

    Article  Google Scholar 

  10. Nguyen D T, Park J G, and Kim Y S, Metall Mater Trans A 41A (2010) 1983.

    Article  Google Scholar 

  11. Hill R, Proc R Soc Lond A193 (1948) 281.

    Article  Google Scholar 

  12. Barlat F, and Lian J, Int J Plast 5 (1989) 51.

    Article  Google Scholar 

  13. Barlat F, Lege D J, and Brem J C, Int J Plast 7 (1991) 693.

    Article  Google Scholar 

  14. Barlat F, Brem J C, Yoon J W, Dick R E, Choi S H, Chung K, and Lege D J, in Proc 8th International Symposium on Plasticity and Its Current Applications, Whistler, Canada, July 2000, (eds) Khan A S, Zhang H, and Yuan Y, Neat Press, Fulton (2000), p 591.

  15. Zhang S, Song B, Wang X, Zhao D, and Chen X D, J Mech Sci Technol 28 (2014) 2263.

    Article  Google Scholar 

  16. Donachie Jr M, Titanium, a Technical Guide, 2nd ed., ASM, Materials Park (2000), p 46.

  17. Nguyen D T, Kim Y S, and Jung D W, Int J Precis Eng Manuf 13 (2012) 747.

    Article  Google Scholar 

  18. Nixon M E, Cazacu O, and Lebensohn R A, Int J Plast 26 (2010) 516.

    Article  Google Scholar 

  19. Follansbee P S, and Gray III G T, Metall Trans A 20A (1989) 863.

    Article  Google Scholar 

  20. Khan A S, Kazmi R, Farrokh B, and Zupan M, Int J Plast 23 (2007) 1105.

    Article  Google Scholar 

  21. Lin Y C, Chen M S, and Zhong J, Mater Lett 62 (2008) 2132.

    Article  Google Scholar 

  22. Yang Y Q, Li B C, and Zhang Z M, Mater Sci Eng A 499 (2009) 238.

    Article  Google Scholar 

  23. Zheng Q G, Ying T, and Jie Z, Proc Inst Mech Eng B 224 (2010) 1707.

    Article  Google Scholar 

  24. Lin Y C, and Liu G, Comput Mater Sci 48 (2009) 54.

    Article  Google Scholar 

  25. Lin Y C, Xia Y C, Chen X M, and Chen M S, Comput Mater Sci 50 (2010) 227.

    Article  Google Scholar 

  26. Nguyen D T, High Temp Mater Process 33 (2014) 449.

    Article  Google Scholar 

  27. Kuwabara T, Compr Mater Process 1 (2014) 95.

    Article  Google Scholar 

  28. Chan K S, and Koss D A, Metall Mater Trans A 14 (1983) 1333.

    Article  Google Scholar 

  29. Bridier F, Villechaise P, and Mendez J, Acta Mater 53 (2005) 555.

    Article  Google Scholar 

  30. Shin G S, Park J G, Kim J H, Kim Y S, Park Y H, and Park N K, Trans Mater Process 24 (2015) 5.

    Article  Google Scholar 

  31. Logan R W, and Hosford W F, Int J Mech Sci 22-7 (1980) 419.

    Article  Google Scholar 

  32. Cazacu O, Plunkett B, and Barlat F, Int J Plast 22 (2006) 1171.

    Article  Google Scholar 

  33. Lee M G, Kim S J, Wagoner R H, Chung K, and Kim H Y, Int J Plast 25 (2009) 70.

    Article  Google Scholar 

Download references

Acknowledgments

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number “107.02-2013.01” and supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MEST) (No. 2014R1A2A2A01005903). We would like to thank Professor J. H. Kim, Hanbat National University, Korea for his support in determining the microstructure of Ti–6Al–4V alloy sheets by SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duc-Toan Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, DT., Park, JG. & Kim, YS. A Study on Yield Function for Ti–6Al–4V Titanium Alloy Sheets at Elevated Temperatures. Trans Indian Inst Met 69, 1343–1350 (2016). https://doi.org/10.1007/s12666-015-0687-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0687-5

Keywords

Navigation