Skip to main content
Log in

Deduction of geometrical approximation yield criterion and its application

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

A new linear yield criterion, referred to as geometrical approximation (GA) yield criterion, is proposed in this paper. On the π-plane in Haigh Westergaard stress space, its locus is an equilateral and non-equiangular dodecagon which has the largest approximation to the Mises locus in geometry. Also, its specific plastic work is deduced and applied to the limit analysis of circular plate under uniformly distributed load. Classical yield experimental data are adopted to validate the proposed criterion. It shows that the GA yield criterion can well fit the classical experimental data for different ductile metals. Application of the deduced specific plastic work to the limit analysis of a circular plate shows that the GA-based analytical results are higher than the Tresca results and closely match the Mises numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Coulomb, Essai sur une application des règles de maximis & minimis à quelques problèmes de statique, relatifs à l’architecture. Mém., Divers savants, 7 (1776) 343–382.

    Google Scholar 

  2. H. Tresca, On the flow of solid bodies subjected to high pressures, C. R. Acad. Sci., Paris, 59 (1864) 754.

    Google Scholar 

  3. R. von Mises, Mechanik der Festen Korper im plastisch deformablen Zustand, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1 (1913) 582–592.

    MATH  Google Scholar 

  4. R. von. Mises, Mechanik der plastischen Formänderung von Kristallen, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 8(3) (1928) 161–185.

    Article  MATH  Google Scholar 

  5. R. Hill, The mathematical theory of plasticity, Clarendon Press, Oxford (1950).

    MATH  Google Scholar 

  6. W. F. Hosford, A general isotropic yield criterion, Journal of Applied Mechanics, 39(2) (1972) 597–609.

    Article  Google Scholar 

  7. A. G. Miller, Review of limit loads of structures containing defects, Int. J. Pressure Vessels Piping, 32(1) (1988) 197–327.

    Article  Google Scholar 

  8. O. Cazacu and F. Barlat, A criterion for description of anisotropy and yield differential effects in pressure-insensitive metals, International Journal of Plasticity, 20(11) (2004) 2027–2045.

    Article  MATH  Google Scholar 

  9. X. K. Zhu and B. N. Leis, Average shear stress yield criterion and its application to plastic collapse analysis of pipelines, International Journal of Pressure Vessels and Piping, 83(9) (2006) 663–671.

    Article  Google Scholar 

  10. D. C. Drucker, Relation of experiments to mathematical theories of plasticity, J. Apply Mech, Trans ASME, 16(4) (1949) 349–357.

    MathSciNet  MATH  Google Scholar 

  11. M. H. Yu, Twin shear stress yield criterion, Int. J. Mech. Sci., 25(1) (1983) 71–74.

    Article  Google Scholar 

  12. D. W. Zhao and G. F. Li, The surface integral to axisymmetric drawing through elliptic-die profile, Engineering Mechanics, 11(4) (1994) 131–136 (in Chinese).

    Google Scholar 

  13. D. W. Zhao, J. Z. Xu and H. Yang, Application of twin shear stress yield criterion in axisymmetrical indentation of a semi-infinite medium, Proceedings of International Symposium on Strength Theory, New York (1998) 1079–1084.

    Google Scholar 

  14. M. H. Yu, A new system of strength theory, Xian Jiaotong University Print, Xi’an, China (1992) (in Chinese).

    Google Scholar 

  15. M. H. Yu, Unified strength theory and its application, Xi’an Jiaotong University Press, Xi’an, China (1995) (in Chinese).

    Google Scholar 

  16. G. W. Ma, S. Iwasaki, Y. Miyamoto and H. Deto, Plastic limit analysis of circular plates with respect to unified yield criterion, Int. J. Mech. Sci., 40(10) (1998) 963–975.

    Article  MATH  Google Scholar 

  17. Y. Zhang, H. F. Qiang and Y. C. Yang, Unified solutions to mixed mode crack tip under small scale yielding, Chinese Journal of Mechanical Engineering, 43(2) (2007) 50–54.

    Article  Google Scholar 

  18. M. Alkhader and M. Vural, An energy-based anisotropic yield criterion for cellular solids and validation by biaxial FE simulations, Journal of the Mechanics and Physics of Solids, 57(5) (2009) 871–890.

    Article  MathSciNet  MATH  Google Scholar 

  19. E. W. Kelly and W. F. Hosford, Deformation characteristics of textured magnesium, Tranaction on TMS AIME, 242(4) (1968) 654–661.

    Google Scholar 

  20. O. Cazacu, B. Plunkett and F. Barlat, Orthotropic yield criterion for hexagonal closed packed metals, International Journal of Plasticity, 22(7) (2006) 1171–1194.

    Article  MATH  Google Scholar 

  21. O. Cazacu, I. R. Ionescu and J. W. Yoon, Orthotropic strain rate potential for the description for anisotropy in tension and compression of metals, International Journal of Plasticity, 26(6) (2010) 887–904.

    Article  MATH  Google Scholar 

  22. M. E. Nixon, O. Cazacu and R. A. Lebensohn, Anisotropic response of high-purity a-titanium: Experimental characterization and constitutive modeling, International Journal of Plasticity, 26(4) (2010) 516–532.

    Article  MATH  Google Scholar 

  23. B. Plunkett, O. Cazacu and F. Barlat, Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals, International Journal of Plasticity, 24(5) (2008) 847–866.

    Article  MATH  Google Scholar 

  24. F. Barlat, W. Y. Jeong and O. Cazacu, On linear transformations of stress tensors for the description of plastic anisotropy, International Journal of Plasticity, 23(5) (2007) 876–896.

    Article  MATH  Google Scholar 

  25. V. Cvitanic, F. Vlak and Z. Lozina, A finite element formulation based on non-associated plasticity for sheet metal forming, International Journal of Plasticity, 24(4) (2008) 328–351.

    Article  MATH  Google Scholar 

  26. F. Yoshida, H. Hamasaki and T. Uemori, A user-friendly 3D yield function to describe anisotropy of steel sheets, International Journal of Plasticity, 45 (2013) 119–139.

    Article  Google Scholar 

  27. O. Cazacu and F. Barlat, Generalization of Drucker’s yield criterion to orthotropy, Math. Mech. Solids, 6(6) (2001) 613–610.

    Article  MATH  Google Scholar 

  28. H. Aretz, O. S. Hopperstad and O. S. Lademo, Yield function calibration for orthotropic sheet metals based on uniaxial and plane strain tensile tests, J. Mater. Process. Technol., 186(1) (2007) 221–235.

    Article  Google Scholar 

  29. D. Banabic, T. Kuwabara, T. Balan, D. S. Comsa and D. Julean, Non-quadratic yield criterion for orthotropic sheet metals under plane-stress conditions, Int. J. Mech. Sci., 45(5) (2003) 797–811.

    Article  MATH  Google Scholar 

  30. S. Soare, J. W. Yoon and O. Cazacu, On the use of homogeneous polynomials to develop anisotropic yield functions with applications to sheet forming, Int. J. Plasticity, 24(6) (2008) 915–944.

    Article  MATH  Google Scholar 

  31. W. Hu, An orthotropic yield criterion in a 3-D general stress state, Int. J. Plasticity, 21(9) (2005) 1771–1796.

    Article  MATH  Google Scholar 

  32. R. Desmorat and R. Marull, Non-quadratic Kelvin models based plasticity criteria for anisotropic materials, International Journal of Plasticity, 27(3) (2011) 328–351.

    Article  MATH  Google Scholar 

  33. A. S. Khan, S. J. Yu and H. W. Liu, Deformation induced anisotropic responses of Ti-6Al-4V alloy Part II: A strain rate and temperature dependent anisotropic yield criterion, International Journal of Plasticity, 38 (2012) 14–26.

    Article  Google Scholar 

  34. J. Huh, H. Huh and C. S. Lee, Effect of strain rate on plastic anisotropy of advanced high strength steel sheets, Int. J. Plasticity, 44 (2013) 23–46.

    Article  Google Scholar 

  35. W. B. Huang and G. P. Zeng, Application of twin shear stress yield criterion to solve some problems in plastic mechanics, Acta Mechanica Sinica, 21(2) (1989) 249–256 (in Chinese).

    MathSciNet  Google Scholar 

  36. R. A. C. Slater, Engineering plasticity theory and application to metal forming process, The Macmillan Press Ltd, London (1977).

    Google Scholar 

  37. W. Lode, Versuche ueber den einfluss der mittleren Hauptspannung auf das fliessen der metalle eisen, kupfer, und nickel, Zeitschrift für Physik, 36(11–12) (1926) 913–939.

    Article  Google Scholar 

  38. J. M. Lessels and C. W. MacGregor, Combined stress experiments on a nickel-chrome-molybdenum steel, J. Franklin Inst., 230(2) (1940) 163–181.

    Article  Google Scholar 

  39. P. M. Naghdi, F. Essenburg and W. Koff, An experimental study of initial and subsequent yield surface in plasticity, J. Appl. Mech., 25 (1958) 201–209.

    Google Scholar 

  40. W. A. Maxey, Measurement of yield strength in the mill expander, Proceedings of the fifth symposium on line pipe research, Houston (1974) 1–32.

    Google Scholar 

  41. B. Y. Xu and X. S. Liu, Plastic limit analysis of structure, China Architecture and Building Presss, Beijing, China (1985) (in Chinese).

    Google Scholar 

  42. H. G. Hopkins and A. J. Wang, Load carrying capacities for circular plates of perfectly-plastic material with arbitrary yield condition, Journal of Mechanics and Physics of Solids, 3(2) (1955) 117–129.

    Article  MathSciNet  Google Scholar 

  43. S. G. Liu and T. Zhang, Basic theory of elasticity and plasticity, Huazhong University of Science and Technology Press, Wuhan, China (2008) (in Chineses).

    Google Scholar 

  44. G. D. Wang and D. W. Zhao, Modern mechanics of materials forming, Northeastern University Press, Shenyang, China (2004) (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binna Song.

Additional information

Recommended by Associate Editor HYUNG YIL LEE

Shunhu Zhang received his Ph.D. in State Key Lab of Rolling and Automation from Northeastern University, China, in 2013. He is currently a Lecturer at the Shagang School of Iron and Steel, Soochow University, China. His current research interests include metal forming mechanics, heat and mass transfer process of food drying.

Binna Song received her Ph.D. in Nonferrous metal metallurgy from Northeastern University, China, in 2012. She is a currently a Lecturer at the Shagang School of Iron and Steel, Soochow University, China. His current research interests include cellular metals, powder metallurgy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Song, B., Wang, X. et al. Deduction of geometrical approximation yield criterion and its application. J Mech Sci Technol 28, 2263–2271 (2014). https://doi.org/10.1007/s12206-014-0515-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-014-0515-6

Keywords

Navigation