Skip to main content
Log in

An analysis of the low temperature, low and high strain-rate deformation of Ti−6Al−4V

  • Mechanical Behavior
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The deformation behavior of Ti−6Al−4V at temperatures between 76 and 495 K, strain rates between 0.001 and 3000 s−1, and compressive strains to 0.3 has been investigated. Measurements of yield stress as a function of test temperature, strain rate, and prestrain history are analyzed according to the model proposed by Kocks and Mecking. The mechanical threshold stress (flow stress at 0 K) is used as an internal state variable, and the contributions to the mechanical threshold stress from the various strengthening mechanisms present in this alloy are analyzed. Transmission electron microscopy (TEM) is used to correlate deformation substructure evolution with the constitutive behavior. The deformation substructure of Ti-6-4 is observed to consist of planar slip in the α grains at quasistatic strain rates. At high strain rates, deformation twinning is observed in addition to planar slip. Increasing the temperature to 495 K is seen to alter the deformation mode to more random slip; the effect of this on the proposed deformation model is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Hammond and J. Nutting:Metal Science, 1977, vol. 11, pp. 474–90.

    Article  CAS  Google Scholar 

  2. E.W. Collings:The Physical Metallurgy of Titanium Alloys, ASM, Metals Park, OH, 1984.

    Google Scholar 

  3. U.F. Kocks:J. Eng. Mater. and Tech., 1976, vol. 98, pp. 76–85.

    CAS  Google Scholar 

  4. H. Mecking and U.F. Kocks:Acta Metall., 1981, vol. 29, pp. 1865–75.

    Article  CAS  Google Scholar 

  5. N.E. Paton, J.C. Williams, and G.P. Rauscher:Titanium Science and Technology, R.I. Jaffee and H.M. Burte, eds., Plenum Press, New York, NY, 1973, pp. 1049–69.

    Google Scholar 

  6. H. Conrad:Acta Metall., 1966, vol. 14, pp. 1631–33.

    Article  CAS  Google Scholar 

  7. B. de Meester, M. Döner, and H. Conrad:Zeitschrift für Metallkunde, 1973, vol. 64, pp. 775–81.

    Google Scholar 

  8. H. Conrad, M. Döner, and B. de Meester:Titanium Science and Technology, 2nd Int. Conf., R.I. Jaffee and H.M. Burte, eds., Plenum Press, New York, NY, 1973, pp. 969–1005.

    Google Scholar 

  9. R.R. Zeyfang and H. Conrad:Zeitschrift für Metallkunde, 1975, vol. 66, pp. 422–27.

    CAS  Google Scholar 

  10. K. Okazaki and H. Conrad:Japan Institute of Metals, Transactions, 1972, vol. 13, pp. 205–13.

    CAS  Google Scholar 

  11. U.F. Kocks, A.S. Argon, and M.F. Ashby:Progress of Materials Science, Pergamon Press, New York, NY, 1975, vol. 19, pp. 139–43.

    Google Scholar 

  12. U.F. Kocks:Strength of Metals and Alloys, ICSMA 5, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Toronto, 1980, pp. 1661–80.

    Google Scholar 

  13. P. Haasen:Phil. Mag., 1958, vol. 3, pp. 384–418.

    CAS  Google Scholar 

  14. P.S. Follansbee and U.F. Kocks:Acta Metall., 1988, vol. 36, pp. 81–93.

    Article  Google Scholar 

  15. R.N. Orava, G. Stone, and H. Conrad:Trans. ASM, 1966, vol. 59, pp. 171–84.

    CAS  Google Scholar 

  16. B. de Meester, M. Döner, and H. Conrad:Metall. Trans. A, 1975, vol. 6A, pp. 65–75.

    Google Scholar 

  17. P.P. Tung and A.W. Sommer:Metall. Trans., 1970, vol. 1, pp. 947–53.

    CAS  Google Scholar 

  18. J.I. Dickson, L. Handfield, and G. L'Espérance:Metall. Trans. A, 1985, vol. 16A, pp. 694–95.

    CAS  Google Scholar 

  19. A.M. Garde, A.T. Santhanam, and R.E. Reed-Hill:Acta Metall., 1972, vol. 20, pp. 215–20.

    Article  CAS  Google Scholar 

  20. C.E. Frantz, P.S. Follansbee, and W.J. Wright:High Energy Rate Fabrication, I. Berman and J.W. Schroeder, eds., ASME, New York, NY, 1984, pp. 229–36.

    Google Scholar 

  21. L.W. Meyer,Titanium, Science and Technology, G. Lütjering, U. Zwicker, and W. Bunk, eds., Deutsche Gesellschaft für Metallkunde, 1984, pp. 1851–58.

  22. T. Nicholas:Experimental Mechanics, 1981, vol. 38, pp. 177–85.

    Article  Google Scholar 

  23. C.J. Maiden and S.J. Green:J. Appl. Mech., 1966, vol. 33, pp. 496–504.

    CAS  Google Scholar 

  24. P.S. Follansbee:Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, L.E. Murr, K.P. Staudhammer, and M.A. Meyers, eds., Marcel Dekker, New York, NY, 1986, pp. 451–79.

    Google Scholar 

  25. J. Harding:Archives of Mechanics, 1975, vol. 27, pp. 715–32.

    CAS  Google Scholar 

  26. M. Peters and G. Luetjering:Titanium '80, Proc. of the 4th Int. Conf. on Titanium, H. Kimura and O. Izumi, eds., TMS-AIME, Warrendale, PA, 1980, pp. 925–35.

    Google Scholar 

  27. M.J. Blackburn and J.C. Williams:Trans. AIME, 1969, vol. 62, pp. 398–409.

    CAS  Google Scholar 

  28. N.E. Paton and W.A. Backofen:Metall. Trans., 1970, vol. 1, pp. 2839–47.

    CAS  Google Scholar 

  29. Y.P. Varshni:Physical Review B, 1970, vol. 2, no. 10, pp. 3952–58.

    Article  Google Scholar 

  30. E.S. Fisher and C.J. Renken:Physical Review, 1964, vol. 135, no. 2A, pp. A482-A494.

    Article  Google Scholar 

  31. P.E. Armstrong: Los Alamos National Laboratory. Los Alamos, NM, unpublished research, 1986.

  32. P.S. Follansbee, G. Regazzoni, and U.F. Kocks:Mechanical Properties at High Rates of Strain, J. Harding, ed., Institute of Physics, London, 1984, Ser. 70, pp. 71–80.

    Google Scholar 

  33. G. Regazzoni, U.F. Kocks, and P.S. Follansbee:Acta Metall., 1987, vol. 35, pp. 2865–75.

    Article  CAS  Google Scholar 

  34. G. Regazzoni, J.N. Johnson, and P.S. Follansbee:J. Appl. Mech., 1986, vol. 108, pp. 519–28.

    Article  Google Scholar 

  35. P.S. Follansbee:Impact Loading and Dynamic Behaviour of Materials, C. Y. Chiem, H.-D. Kunze, and L. W. Meyer, eds., Informationsgesellschaft, 1988, pp. 315–22.

  36. R.F. Recht:J. Appl. Mech., 1964, vol. 31E, pp. 189–93.

    Google Scholar 

  37. R. Dormeval and M. Stelly:High Energy Rate Fabrication, 7th Int. conf., University of Leeds, 1981, pp. 1–9.

  38. S.P. Timothy and I.M. Hutchings:Acta Metall., 1985, vol. 33, pp. 667–76.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Follansbee, P.S., Gray, G.T. An analysis of the low temperature, low and high strain-rate deformation of Ti−6Al−4V. Metall Trans A 20, 863–874 (1989). https://doi.org/10.1007/BF02651653

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02651653

Keywords

Navigation