Skip to main content
Log in

The potential of using soft-sediment deformation structures for quantitatively reconstructing paleo-seismic shaking intensity: progress and prospect

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Quantifying the magnitude of an earthquake is very important for long-term and medium-term earthquake prediction, post-earthquake emergency rescue and seismic hazard assessment. Paleo-seismology is the investigation of past earthquakes in the geological record, in particular their location, timing and size. Uncertainties remain in the paleo-earthquake magnitudes determined by traditional surface rupture parameters, especially because most seismic events do not result in surface ruptures or are of less than 0.3 m (M =  ~ 6–6.8). To address the problem of magnitude evaluation of earthquakes that did not reveal major dislocations, this paper deals with the methods used to determine the seismic shaking intensity based on the types and forms of soft-sediment deformation structures, including maximum liquefaction distance, thickness of disturbed layer, empirical formulae, and thickness of rapidly deposited sand layer. Then we discuss and analyze these methods in terms of their theoretical basis, advantages and disadvantages, accuracy, applicability and problems. We chose two case studies: first, a typical seismics-related deposit (liquefied layer and disrupted layer) represented by a seismite in the late-Pleistocene Lake Lisan section near Masada in the Dead Sea Basin; and second, the liquefied diapir triggered by an earthquake in the late-Quaternary lacustrine sediments at Luobozhai in the upper reaches of the Minjiang River, East Tibet. The five methods listed above are employed to determine earthquake magnitudes associated with the seismics-related deposit and liquefied diapir, yielding magnitudes of 5.5–6.5 and 6.0–7.0, respectively. The combination of the five methods, provided a new and relatively convenient method for determining seismic shaking, especially in lacustrine sediments. This study can serve as a valid reference for comparing methods of calculating the magnitude of a paleo-earthquake based on surface rupture parameters, and provides a better understanding of the long-term seismic activity and risk in tectonically active regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agnon A, Migowski C, Marco S (2006) Intraclast breccias in laminated sequences reviewed: recorders of paleo-earthquakes. Spec Pap Geol Soc Am 401:195–214

    Google Scholar 

  • Alfaro P, Moretti M, Soria JM (1997) Soft sediment deformation structures induced by earthquakes (seismites) in Pliocene lacustrine deposits (Guadix-Baza Basin, Central Betic Cordillera). Eclogae Geol Helv 90:531–540

    Google Scholar 

  • Alfaro P, Delgado J, Estévez A, Molina J, Moretti M, Soria J (2002) Liquefaction and fluidization structures in Messinian storm deposits (Bajo Segura Basin, Betic Cordillera, (southern Spain). Int J Earth Sci 91(3):505–513

    Article  Google Scholar 

  • Allen JRL (1986) Earthquake magnitude-frequency, epicentral distance, and soft-sediment deformation in sedimentary basins. Sediment Geol 46:67–75

    Article  Google Scholar 

  • Alsop GI, Marco S (2011) Soft-sediment deformation within seismogenic slumps of the Dead Sea basin. J Struct Geol 33(4):433–457

    Article  Google Scholar 

  • Alsop GI, Marco S (2013) Seismogenic slump folds formed by gravity-driven tectonics down a negligible subaqueous slope. Tectonophysics 605:48–69

    Article  Google Scholar 

  • Ambraseys NN (1988) Engineering seismology: part I. Earthq Eng Struct Dyn 17:1–50

    Article  Google Scholar 

  • Ambraseys N (2002) The seismic activity of the Marmara Sea region over the last 2000 years. Bull Seismol Soc Am 92(1):1–18

    Article  Google Scholar 

  • Ambraseys N (2009) Earthquakes in the Mediterranean and Middle East: a multidisciplinary study of seismicity up to 1900. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ambraseys NN, Finkel CF (1991) Long-term seismicity of Istanbul and of the Marmara Sea region. Terra Nova 3(5):527–539

    Article  Google Scholar 

  • An WP, Zhao JQ, Yan XB, Li ZH, Su ZH (2008) Tectonic deformation of lacustrine in Qiangyang on the Minjiang fault zone and ancient earthquake. Seismol Geol 30(4):980–988 (in Chinese)

    Google Scholar 

  • Anketell JM, Cegla J, Dzulinsky S (1970) On the deformational structures in systems with reversed density gradients. Annales De La Société Géologique De Pologne 40(1):3–30

    Google Scholar 

  • Ansary M, Arefin R (2020) Assessment of predominant frequencies in Dhaka city, Bangladesh using ambient vibration. Asian J Civ Eng 21:91–104

    Article  Google Scholar 

  • Archer C, Noble P, Rosen MR, Sagnotti L, Florindo F, Mensing S, Piovesan S, Michetti G, Michetti AM (2019) Lakes as paleoseismic records in a seismically-active, low-relief area (Rieti Basin, central Italy). Quatern Sci Rev 211:186–207

    Article  Google Scholar 

  • Arnaud F, Lignier V, Revel M, Desmet M, Tribovillard N (2010) Flood and earthquake disturbance of 210pb geochronology (lake anterne, north French Alps). Terra Nova 14(4):225–232

    Article  Google Scholar 

  • Audemard FAD, Santis F (1991) Survey of liquefaction structures induced by recent moderate earthquakes. Bull Eng Geol Environ 44:5–16

    Google Scholar 

  • Avşar U, Hubert-Ferrari AD, Batist M, Lepoint G, Schmidt S, Fagel N (2014) Seismically-triggered organic-rich layers in recent sediments from Göllüköy Lake (North Anatolian Fault, Turkey). Quatern Sci Rev 103:67–80

    Article  Google Scholar 

  • Avşar U, Hubert-Ferrari AD, Batist M, Schmidt S, Fagel N (2015) Sedimentary records past earthquakes in Boraboy Lake during the last ca 600 years (North Anatolian Fault, Turkey). Palaeogeogr Palaeoclimatol Palaeoecol 433:1–9

    Article  Google Scholar 

  • Beck C (2009) Late Quaternary lacustrine paleo-seismic archives in north-western Alps: examples of earthquake-origin assessment of sedimentary disturbances. Earth Sci Rev 96(4):327–344

    Article  Google Scholar 

  • Berra F, Felletti F (2011) Syndepositional tectonics recorded by soft-sediment deformation and liquefaction structures (continental Lower Permian sediments, Southern Alps, Northern Italy): stratigraphic significance. Sediment Geol 235(3–4):249–263

    Article  Google Scholar 

  • Bommer JJ, Rodrı́guez CE (2002) Earthquake-induced landslides in Central America. Eng Geol 63(3–4):189–220

    Article  Google Scholar 

  • Bowman D, Korjenkov A, Porat N (2004) Late-Pleistocene seismites from Lake Issyk-Kul, the Tien Shan range, Kyrghyzstan. Sediment Geol 163:211–228

    Article  Google Scholar 

  • Cao ZZ, Yuan XN, Wang WN, Sun R (2010) Distribution and characteristics of gravelly soils liquefaction in the Wenchuan Ms 8.0 Earthquake, China. Civ Eng J s2:312–319

    Google Scholar 

  • Chang M, Kuo CP, Hsu RE, Shau SH, Lin TM (2012) Liquefaction potential and post-liquefaction settlement evaluations of the Chuoshui river alluvial fan in Taiwan. Bull Eng Geol Environ 71(2):325–336

    Article  Google Scholar 

  • Chen SF, Wilson CJL, Deng QD, Zhao XL, Zhi LL (1994) Active faulting and block movement associated with large earthquakes in the Min Shan and Longmen Mountains, northeastern Tibetan Plateau. J Geophys Res Solid Earth 99:24025–24038

    Article  Google Scholar 

  • Chen F, Qiang M, Zhou A, Xiao S, Chen J, Sun D (2013a) A 2000-year dust storm record from Lake Sugan in the dust source area of arid China. J Geophys Res Atmos 118(5):2149–2160

    Article  Google Scholar 

  • Chen LW, Yuan XM, Sun R (2013b) Review of liquefaction phenomena and geotechnical damage in the 2011 New Zealand Mw 6.3 earthquake. World Earthq Eng 29(3):1–9 (in Chinese)

    Google Scholar 

  • Chen L, Wang H, Ran YK, Lei S, Li X (2014) The 2013 Lushan Ms 7.0 earthquake: varied seismogenic structure from the 2008 Wenchuan earthquake. Seismol Res Lett 85(1):34–39

    Article  Google Scholar 

  • Das S, Ghosh S, Kayal JR (2019) Liquefaction potential of Agartala City in Northeast India using a GIS platform. Bull Eng Geol Environ 78(4):2919–2931

    Article  Google Scholar 

  • Dasgupta P (1998) Recumbent flame structures in the Lower Gondwana rocks of the Jharia Basin India-a Plausible Origin. Sediment Geol 119(119):253–261

    Article  Google Scholar 

  • Davenport CA, Ringrose PS (1987) Deformation of Scottish Quaternary sediment sequence by strong earthquake motions. In: Jones ME, Preston RM (eds) Deformation of sediments and sedimentary rocks. Geological Society Special Publications, London, pp 299–314

    Google Scholar 

  • De R-P, Vicente G, Calvo JP, Pérez-López R (2003) Similarities between recent seismic activity and paleoseismites during the Late Miocene in the external Betic Chain (Spain): relationship by ‘b’ value and the fractal dimension. J Struct Geol 25(5):749–763

    Article  Google Scholar 

  • Fan X, Westen CJ, Korup O, Gorum T, Xu Q, Dai F, Huang R, Wang G (2012) Transient water and sediment storage of the decaying landslide dams induced by the 2008 Wenchuan earthquake China. Geomorphology 171:58–68

    Article  Google Scholar 

  • Fan JW, Jiang HC, Shi W, Guo QQ, Zhang SQ, Wei XT, Xu HY, Zhong N, Huang ST, Chang XD, Xiao JL (2020) A 450-year lacustrine record of recurrent seismic activities around the Fuyun fault, Altay Mountains, northwest China. Quatern Int 558:75–88

    Article  Google Scholar 

  • Fan JW, Xu HY, Shi W, Guo QQ, Zhang SQ, Wei XT, Cai M, Huang ST, Wang J, Xiao JL (2022) A~ 28-kyr continuous lacustrine paleoseismic record of the intraplate, slow-slipping Fuyun fault in Northwest China. Front Earth Sci 10:828801

    Article  Google Scholar 

  • Fu ZX (1997) Mechanic study on seismicity of the Chinese mainland. Seismological Press, Beijing, pp 44–45 (in Chinese)

    Google Scholar 

  • Galli P (1999) Active tectonicsa longthe Wadi Araba-Jordan Valley transform fault. J Geophys Res 104:2777–2796

    Article  Google Scholar 

  • Galli P (2000) New empirical relationships between magnitude and distance for liquefaction. Tectonophysics 324(3):169–187

    Article  Google Scholar 

  • Galli P, Meloni F (1993) Liquefazione Storica, Uncatalogo nazionale. Quat. Ital. J. Quat. Sci. 6:271–292

    Google Scholar 

  • Galli P, Ferreli L (1995) Methodological approach for historical liquefaction researches. In: Serva L, Slemmons DB (eds) Perspectives in paleoseismology. association of engineering geologists, Spec. Publ. 6, Sudbury, MA, pp 35–48

  • Gibert L, Alfaro P, García-Tortosa FJ, Scott G (2011) Superposed deformed beds produced by single earthquakes (Tecopa Basin, California): insights into paleoseismology. Sediment Geol 235(3–4):148–159

    Article  Google Scholar 

  • Guiraud M, Plaziat JC (1993) Seismites in the fluviatile bima sandstones: identification of paleoseisms and discussion of their magnitudes in a cretaceous synsedimentary strike-slip basin (Upper Benue, Nigeria). Tectonophysics 225(4):1–522

    Article  Google Scholar 

  • Harrison P, Maltman AJ (2003) Numerical modelling of reverse-density structures in soft non-newtonian sediments. Geol Soc Lond Spec Publ 216(1):35–50

    Article  Google Scholar 

  • Hibsch C, Alvarado A, Yepes H, Perez VH, Sébrier M (1997) Holocene liquefaction and soft-sediment deformation in Quito (Ecuador): a paleoseismic history recorded in lacustrine sediments. J Geodyn 24:259–280

    Article  Google Scholar 

  • Howarth JD, Fitzsimons SJ, Norris RJ, Jacobsen GE (2012) Lake sediments record cycles of sediment flux driven by large earthquakes on the Alpine fault, New Zealand. Geology 40(12):1091–1094

    Article  Google Scholar 

  • Hurst A, Scott A, Vigorito M (2011) Physical characteristics of sand injectites. Earth Sci Rev 106(3–4):215–246

    Article  Google Scholar 

  • Jiang HC, Mao X, Xu HY, Yang HL, Ma XL, Zhong N, Li YH (2014) Provenance and earthquake signature of the last deglacial Xinmocun lacustrine sediments at Diexi, east Tibet. Geomorphology 204:518–531

    Article  Google Scholar 

  • Jiang HC, Zhong N, Li H, Xu HY, Yang HL, Peng XP (2016) Soft sediment deformation structures in the Lixian lacustrine sediments, eastern Tibetan Plateau and implications for postglacial seismic activity. Sediment Geol 344:123–134

    Article  Google Scholar 

  • Jiang HC, Zhong N, Li YH, Ma XL, Xu HY, Shi W, Zhang SQ, Nie GZ (2017) A continuous 13.3-ka record of seismogenic dust events in lacustrine sediments in the eastern Tibetan Plateau. Sci Rep 15686(7):1–9

    Google Scholar 

  • Jones AP, Omoto K (2000) Towards establishing criteria for identifying trigger mechanisms for soft-sediment deformation: a case study of late Pleistocene lacustrine sand and clays, Onikobe and Nakayamadaira Basins, northeastern Japan. Sedimentology 47:1211–1226

    Article  Google Scholar 

  • Karlin RE, Abella SEB (1996) A history of Pacific Northwest earthquakes recorded in Holocene sediments from Lake Washington. J Geophys Res Solid Earth 101(B3):6137–6150

    Article  Google Scholar 

  • Katz A, Agnon A, Marco S (2009) Earthquake-induced barium anomalies in the lisan formation, dead sea rift valley. Isr Earth Planet Sci Lett 286(1–2):219–229

    Article  Google Scholar 

  • Keefer DK (1984) Landslides caused by earthquakes. Geol Soc Am Bull 95(4):406–421

    Article  Google Scholar 

  • Klinger Y, Rivera L, Haessler H, Maurin JC (1999) Active faulting in the Gulf of Aqaba: new knowledge from the Mw 7.3 earthquake of 22 November 1995. Bull Seismol Soc Am 89(4):1025–1036

    Article  Google Scholar 

  • Kundu A, Goswami B, Eriksson PG, Chakraborty A (2011) Palaeoseismicity in relation to basin tectonics as revealed from soft-sediment deformation structures of the Lower Triassic Panchet formation, Raniganj basin (Damodar valley), eastern India. J Earth Syst Sci 120:167–181

    Article  Google Scholar 

  • Kuribayashi E, Tatsuoka F (1975) Brief review of liquefaction during earthquakes in Japan. Soils Found 15(4):81–92

    Article  Google Scholar 

  • Lee DH, Ku C, Yuan H (2004) A study of the liquefaction risk potential at Yuanlin, Taiwan. Eng Geol 71(1):97–117

    Article  Google Scholar 

  • Li LZ, Sun YQ, Li YD (1991) Seismic wave in sedimentary layers and earthquake magnitude. Earthquake 2:64–72 (in Chinese)

    Google Scholar 

  • Li Y, Craven J, Schweig ES, Obermeier SF (1996) Sand boils induced by the 1993 Mississippi River flood: could they one day be misinterpreted as earthquake induced liquefaction. Geology 24:171–174

    Article  Google Scholar 

  • Li T, Chen J, Fang L, Chen Z, Thompson JA, Jia C (2016) The 2015 Mw 64 Pishan earthquake: seismic hazards of an active blind wedge thrust system at the western Kunlun range front, northwest Tibetan Plateau. Seismol Res Lett 87(3):601–608

    Article  Google Scholar 

  • Liang L, Jiang H (2017) Geochemical composition of the last deglacial lacustrine sediments in East Tibet and implications for provenance, weathering, and earthquake events. Quatern Int 430:41–51

    Article  Google Scholar 

  • Liang L, Dai F, Jiang H, Zhong N (2018) A preliminary study on the soft-sediment deformation structures in the Late Quaternary lacustrine sediments at Tashkorgan, northeastern Pamir. China Acta Geol Sin Engl Ed 92(4):1574–1591

    Article  Google Scholar 

  • Liu Y, Xie JF (1984) Vibration liquefaction of sandy soil. Seismological Press, Beijing, pp 1–237 (in Chinese)

    Google Scholar 

  • Liu G, Wang Q, Qiao XJ, Yang SM, You XZ, Zhang R, Zhao B, Tan K, Zhou R, Fang RX (2015) The 25 April 2015 Nepal Ms 8.1 earthquake slip distribution from joint inversion of teleseismic, static and high-rate GPS data. Chin J Geophys 58(11):4287–4297 (in Chinese)

    Google Scholar 

  • Liu F, Li Z, Jiang M, Frattini P, Crosta G (2016) Quantitative liquefaction-induced lateral spread hazard mapping. Eng Geol 207:36–47

    Article  Google Scholar 

  • Liu-Zeng J, Wang P, Zhang ZH, Li ZG, Cao ZZ, Zhang JY, Yuan XM, Wang W, Xing XC (2016) Liquefaction in western Sichuan Basin during the 2008 Mw 7.9 Wenchuan earthquake, China. Tectonophysics 694:214–238

    Article  Google Scholar 

  • Lowe DR (1975) Water escape structures in coarse grained sediments. Sedimentology 22:157–204

    Article  Google Scholar 

  • Lu Y, Waldmann N, Ian Alsop G, Marco S (2017) Interpreting soft sediment deformation and mass transport deposits as seismites in the Dead Sea depocenter. J Geophys Res Solid Earth 122(10):8305–8325

    Article  Google Scholar 

  • Lu Y, Wetzler N, Waldmann N, Agnon A, Marco S (2020) A 220,000-year-long continuous large earthquake record on a slow-slipping plate boundary. Sci Adv 6(48):4170

    Article  Google Scholar 

  • Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslides, earthquakes, and erosion. Earth Planet Sci Lett 229(1):45–59

    Article  Google Scholar 

  • Marco S, Agnon A (1995) Prehistoric earthquake deformations near Masada, Dead Sea Graben. Geology 23(8):695–698

    Article  Google Scholar 

  • Marco S, Agnon A (2005) High-resolution stratigraphy reveals repeated earthquake faulting in the Masada fault zone, Dead Sea Transform. Tectonophysics 408(1):101–112

    Article  Google Scholar 

  • Marco S, Stein M, Agnon A, Ron H (1996) Long term earthquake clustering: a 50,000 year paleoseismic record in the Dead Sea Graben. J Geophys Res 101(B3):6179–6192

    Article  Google Scholar 

  • Maurer BW, Green RA, Quigley MC, Bastin S (2015) Development of magnitude-bound relations for paleoliquefaction analyses: New Zealand case study. Eng Geol 197:253–266

    Article  Google Scholar 

  • Mazumder R, Van Loon AJ, Arima M (2006) Soft-sediment deformation structures in the Earth’s oldest seismites. Sediment Geol 186:19–26

    Article  Google Scholar 

  • Mccalpin JP, Nelson AR (1996) Chapter 1 introduction to paleoseismology. Int Geophys 62(09):1–32

    Google Scholar 

  • McHugh CM, Seeber L, Cormier MH, Dutton J, Cagatay N, Polonia A, Gorur N (2006) Submarine earthquake geology along the north Anatolia fault in the Marmara Sea, Turkey, a model for transform basin sedimentation. Earth Planet Sci Lett 248(3):661–684

    Article  Google Scholar 

  • Migowski C, Agnon A, Bookman R, Negendank JFW, Stein M (2004) Recurrence pattern of Holocene earthquakes along the Dead Sea transform revealed by varve-counting and radiocarbon dating of lacustrine sediments. Earth Planet Sci Lett 222(1):301–314

    Article  Google Scholar 

  • Mills PC (1983) Genesis and diagnostic value of soft-sediment deformation structures—a review. Sediment Geol 35:83–104

    Article  Google Scholar 

  • Moernaut J, Daele MV, Heirman K, Fontijn K, Strasser M, Pino M, Roberto U, De Batist M (2014) Lacustrine turbidites as a tool for quantitative earthquake reconstruction: new evidence for a variable rupture mode in south central Chile. J Geophys Res Solid Earth 119(3):1607–1633

    Article  Google Scholar 

  • Molenaar A, Daele MV, Vandorpe T, Degenhart G, Batist MD, Urrutia R, Pino M, Strasser M, Moernaut J (2021) What controls the remobilization and deformation of surficial sediment by seismic shaking? Linking lacustrine slope stratigraphy to great earthquakes in south-central Chile. Sedimentology 68(6):2365–2396

    Article  Google Scholar 

  • Molina JM, Alfaro P, Moretti M, Soria JM (1998) Soft-sediment deformation structures induced by cyclic stress of storm waves in tempestites (Miocene, Guadalquivir basin, Spain). Terra Nova 10:145–150

    Article  Google Scholar 

  • Monecke K, Anselmetti FS, Becker A, Sturm M, Giardini D (2004) The record of historic earthquakes in lake sediments of central Switzerland. Tectonophysics 394:21–40

    Article  Google Scholar 

  • Monecke K, Anselmetti FS, Becker A, Schnellmann M, Sturm M, Giardini D (2006) Earthquake-induced deformation structures in lake deposits: a Late Pleistocene to Holocene paleoseismic record for Central Switzerland. Eclogae Geol Helv 99(3):343–362

    Article  Google Scholar 

  • Moretti M, Sabato L (2007) Recognition of trigger mechanisms for soft−sediment deformation in the Pleistocene lacustrine deposits of the SantʻArcangelo Basin (Southern Italy): Seismic shock vs, overloading. Sediment Geol 196(1–4):31–45

    Article  Google Scholar 

  • Moretti M, Alfaro P, Caselles O, Canas JA (1999) Modelling seismites with a digital shaking table. Tectonophysics 304:369–383

    Article  Google Scholar 

  • Moretti M, Alfaro P, Owen G (2016) The environmental significance of soft-sediment deformation structures: key signatures for sedimentary and tectonic processes. Sediment Geol 344:1–4

    Article  Google Scholar 

  • Mugnier JL, Huyghe P, Gajurel AP, Upreti BN, Jouanne F (2011) Seismites in the Kathmandu basin and seismic hazard in central Himalaya. Tectonophysics 509(1):33–49

    Article  Google Scholar 

  • Muhammad YK, Syed AT, Muhammad SR, Estella AA, Said M, Nabeel AB, Syed MA, Waqar AZ, Leonard OO (2021) Investigation of coseismic liquefaction-induced ground deformation associated with the 2019 mw 58 Mirpur, Pakistan, earthquake using near-surface electrical resistivity tomography and geological data. Near Surf Geophys. https://doi.org/10.1002/nsg.12148

    Article  Google Scholar 

  • Naik SP, Mohanty A, Porfido S, Tuttle M, Gwon O, Kim YS (2019) Intensity estimation for the 2001 Bhuj earthquake, India on ESI-07 scale and comparison with historical 16th June 1819 Allah Bund earthquake: a test of ESI-07 application for intraplate earthquakes. Quatern Int 536(20):127–143

    Google Scholar 

  • Neuwerth R, Suter F, Guzman CA, Gorin GE (2006) Soft-sediment deformation in a tectonically active area: The Plio-Pleistocene Zarzal Formation in the Cauca valley (western Colombia). Sediment Geol 186:67–88

    Article  Google Scholar 

  • Obermeier SF (1996) Use of liquefaction-induced features for paleoseismic analysis-an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Eng Geol 44(1–4):1–76

    Article  Google Scholar 

  • Obermeier SF (1998) Liquefaction evidence for strong earthquakes of Holocene and latest Pleistocene ages in the states of Indiana and Illinois, USA. Eng Geol 50(3):227–254

    Article  Google Scholar 

  • Obermeier SF, Gohn GS, Weems RE, Gelinas RL, Rubin M (1985) Geologic evidence for recurrent moderate to large earthquakes near Charleston, South Carolina. Science 277:408–410

    Article  Google Scholar 

  • Obermeier SF, Olson SM, Green RA (2005) Field occurrences of liquefaction-induced features: a primer for engineering geologic analysis of paleoseismic shaking. Eng Geol 76(3–4):209–234

    Article  Google Scholar 

  • Obermeier SF, Pond EC, Olson SM (2002) Paleoliquefaction studies in continental settings: geologic and geotechnical factors in interpretations and back-analysis. US Geological Survey Open-File Report, pp 1–29

  • Owen G (1987) Deformation processes in unconsolidated sands. Geol Soc Lond Spec Publ 29(1):11–24

    Article  Google Scholar 

  • Owen G, Moretti M (2008) Determining the origin of soft-sediment deformation structures: a case study from Upper Carboniferous delta deposits in south–west Wales, UK. Terra Nova 20(3):237–245

    Article  Google Scholar 

  • Owen G, Moretti M (2011) Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sediment Geol 235(3):141–147

    Article  Google Scholar 

  • Papadopoulos GA, Lefkopoulos G (1993) Magnitude–distance relation for liquefaction in soil from earthquakes. Bull Seismol Soc Am 83:925–938

    Google Scholar 

  • Papathanassiou G, Mantovani A, Tarabusi G, Rapti D, Caputo R (2015) Assessment of liquefaction potential for two liquefaction prone areas considering the May 20, 2012 Emilia (Italy) earthquake. Eng Geol 189:1–16

    Article  Google Scholar 

  • Postma G (1983) Water escape structures in the context of a depositional model of a mass flow dominated conglomeratic fan-delta (Abrioja Formation, Pliocene, Almeria Basin, SE Spain). Sedimentology 30:91–103

    Article  Google Scholar 

  • Qadri Tadri ST, Islam MA, Shalaby MR, Khattak KR, Sajjad SH (2017) Characterizing site response in the Attock basin, Pakistan, using microtremor measurement analysis. Arab J Geosci 10(12):267

    Article  Google Scholar 

  • Qadri Talha SM, Nawa B, Sajjad SH, Sheikh RA (2015a) Ambient noise H/V spectral ratio in site effects estimation in Fateh jang area, Pakistan. Earthq Sci 28(1):87–95

    Article  Google Scholar 

  • Qadri Talha SM, Sajjad SH, Sheikh RA, Rehman K, Rafi Z, Nawaz B, Haider W (2015b) Ambient noise measurements in rawalpindi-islamabad, twin cities of Pakistan: a step towards site response analysis to mitigate impact of natural hazard. Nat Hazards 78:1111–1123

    Article  Google Scholar 

  • Qiao X, Guo X (2013) Early Jurassic soft-sediment deformation interpreted as seismites in the Wuqia pull-apart basin and the strike-slip Talas-Ferghana fault, Xinjiang, China. Acta Geol Sin Eng Ed 87(3):730–737

    Article  Google Scholar 

  • Qiao XF, Li HB (2008) Pillow, ball-and-pillow structures: paleo-seismic records within strata. Geol Rev 54(6):721–730 (in Chinese)

    Google Scholar 

  • Qiao XF, Li HB, Su DC, He BZ, Tian HS, Guo XP, Song TR, Lu HB, Gao LZ, He J, Yuan XQ, Zhou W, Zhang M, Sun AP, Wang AD (2017) Soft-sediment deformation structures-earthquakes and seismic records. Geological Publishing House, Beijing, pp 1–264

    Google Scholar 

  • Ran YK, Deng QD (1999) History, status and trend about the research of paleoseismology. Chin Sci Bull 44(10):880–889 (in Chinese)

    Article  Google Scholar 

  • Rana N, Sati SP, Sundriyal Y, Juyal N (2016) Genesis and implication of soft-sediment deformation structures in high-energy fluvial deposits of the Alaknanda Valley, Garhwal Himalaya, India. Sediment Geol 344:263–276

    Article  Google Scholar 

  • Ren J, Xu X, Zhang S, Yeats RS, Chen J, Zhu A, Liu S (2018) Surface rupture of the 1933 M 7.5 Diexi earthquake in eastern Tibet: implications for seismogenic tectonics. Geophys J Int 212(3):1627–1644

    Article  Google Scholar 

  • Robinson K, Cubrinovski M, Bradley BA (2014) Lateral spreading displacements from the 2010 Darfield and 2011 Christchurch earthquakes. Int J Geotech Eng 8(4):441–448

    Article  Google Scholar 

  • Rodríguez CE, Bommer JJ, Chandler RJ (1999) Earthquake-induced landslides: 1980–1997. Soil Dyn Earthq Eng 18(5):325–346

    Article  Google Scholar 

  • Rodríguez-Pascua MA, Calvo JP, De Vicente G, Gómez-Gras D (2000) Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene. Sediment Geol 135(1):117–135

    Article  Google Scholar 

  • Rodríguez-Pascua MA, Garduño-Monroy VH, Israde-Alcántara I, Pérez-López R (2010) Estimation of the paleoepicentral area from the spatial gradient of deformation in lacustrine seismites (Tierras Blancas Basin, Mexico). Quatern Int 219(1–2):66–78

    Article  Google Scholar 

  • Saftner DA, Green RA, Hryciw RD (2015) Use of explosives to investigate liquefaction resistance of aged sand deposits. Eng Geol 199:140–147

    Article  Google Scholar 

  • Sasaki Y, Towhata I, Miyamoto K, Shirato M, Narita A, Sasaki T, Sako S (2012) Reconnaissance report on damage in and around river levees caused by the 2011 off the Pacific coast of Tohoku earthquake. Soils Found 52:1016–1032

    Article  Google Scholar 

  • Satyam N, Putti SP (2020) Evaluation of site effects using HVRS microtremor measurements in Vishakhapatnam (Idian). Earth Syst Environ 4:439–454

    Article  Google Scholar 

  • Schwab MJ, Werner P, Dulski P, McGee E, Nowaczyk NR, Bertrand S, Leroy SA (2009) Palaeolimnology of Lake Sapanca and identification of historic earthquake signals, northern Anatolian fault zone (Turkey). Quat Sci Rev 28(11):991–1005

    Article  Google Scholar 

  • Scott B, Price S (1988) Earthquake-induced structures in young sediments. Tectonophysics 147:165–170

    Article  Google Scholar 

  • Seed HB, Idriss IM (1971) Simplified procedure for evaluating soil liquefaction potential. J Soil Mech Found Div 97:1249–1273

    Article  Google Scholar 

  • Seilacher A (1969) Fault-graded beds interpreted as seismites. Sedimentology 13:155–159

    Article  Google Scholar 

  • Shanmugam G (2016) The seismite problem. J Palaeogeogr 5(4):318–362

    Article  Google Scholar 

  • Shapira A, Avni R, Nur A (1993) A new estimate for the epicenter of the Jericho earthquake of 11 July 1927. Isr J Earth Sci 42(2):93–96

    Google Scholar 

  • Shen M (2014) Earthquake information study for paleo-dammed lake at Minjiang River upstream, Chengdu University of Technology, Chengdu, Master thesis, pp 1–119 (in Chinese)

  • Shi W, Jiang H, Alsop GI, Wu G (2022) A continuous 13.3-Ka paleoseismic record constrains major earthquake recurrence in the Longmen Shan Collision Zone. Front Earth Sci. https://doi.org/10.3389/feart.2022.838299

    Article  Google Scholar 

  • Sieh KE (1978) Prehistoric large earthquakes produced by slip on the San Andreas Fault at Pallett Creek, California. J Geophys Res Solid Earth 83:3907–3939

    Article  Google Scholar 

  • Sims JD (1973) Earthquake-induced structures in sediments of Van Norman Lake, San Fernando, California. Science 182(4108):161–163

    Article  Google Scholar 

  • Sims JD (1975) Determining earthquake recurrence intervals from deformational structures in young lacustrine sediments. Tectonophysics 29:141–152

    Article  Google Scholar 

  • Song X, Zhang Y, Shan X, Liu Y, Gong W, Qu C (2019) Geodetic observations of the 2018 mw 7.5 sulawesi earthquake and its implications for the kinematics of the Palu fault. Geophys Res Lett. https://doi.org/10.1029/2019GL082045

    Article  Google Scholar 

  • Stirling M, Goded T, Berryman K, Litchfield N (2013) Selection of earthquake scaling relationships for seismic-hazard analysis. Bull Seismol Soc Am 103(6):2993–3011

    Article  Google Scholar 

  • Su DC, Qiao XF (2018) Thixotropic deformation features of cohesive sediments triggered by palaeoearthquakes. J Palaeogeogr 20(4):609–622 (in Chinese)

    Google Scholar 

  • Suter F, Martínez JI, Vélez MI (2011) Holocene soft-sediment deformation of the Santa Fe-Sopetrán Basin, northern Colombian Andes: evidence for pre-Hispanic seismic activity. Sediment Geol 235:188–199

    Article  Google Scholar 

  • Sutherland R, Eberhart-Phillips D, Harris RA, Stern T, Beavan J, Ellis S, Henrys S, Cox S, Norris RJ, Berryman KR, Townend J, Bannister S, Pettinga J, Leitner B, Wallace L, Little TA, Cooper AF, Yetton M, Stirling M (2007) Do great earthquakes occur on the Alpine fault in central south Island, New Zealand?, A continental plate boundary: tectonics at South Island, New Zealand. Geophys Monogr Am Geophys Union 175:235–251

    Google Scholar 

  • Tang R, Liu S, Jiang N (1983) The 1933 Diexi earthquake. Sichuan Scientific and Technological Press, Chengdu (in Chinese)

    Google Scholar 

  • Tang MY, Jing L, Shao YX, Peng W, Yuan ZD (2015) Analysis about the minimum magnitude earthquake associated with surface ruptures. Seismol Geol 37(4):1193–1214 (in Chinese)

    Google Scholar 

  • Tian HS, Zhang SH, Zhang AS (2016) Test investigation on liquefied deformation structure in saturated lime–mud composites triggered by strong earthquakes. Acta Geol Sin Engl Ed 90(6):2008–2021

    Article  Google Scholar 

  • Trifunac MD, Brady AG (1975) On the correlation of seismic intensity scales with the peaks of recorded strong ground motion. Bull Seismol Soc Am 65:139–162

    Google Scholar 

  • Tuttle MP, Hartleb R, Wolf L, Mayne PW (2019) Paleoliquefaction studies and the evaluation of seismic hazard. Geosciences 9(7):1–61

    Article  Google Scholar 

  • Valera JE, Traubenik ML, Egan JA, Kaneshiro JY (1994) A practical perspective on liquefaction of gravels. In S. Prakash and P. Dakoulas (Editors), Ground failures under seismic conditions. Am Soc Civ Eng Geotech Spec Publ 44:241–257

    Google Scholar 

  • van Loon AJ (2009) Soft-sediment deformation structures in siliciclastic sediments: an overview. Geologos 15:3–55

    Google Scholar 

  • van Loon AJ, Pisarska-Jamroży M, Nartišs M, Krievāns M, Soms J (2016) Seismites resulting from high-frequency, high-magnitude earthquakes in Latvia caused by Late Glacial glacio-isostatic uplift. J Palaeogeogr 5(4):363–380

    Article  Google Scholar 

  • Vandenberghe J (1992) Cryoturbations: a sediment structural analysis. Permafrost Periglac Process 3:343–351

    Article  Google Scholar 

  • Wang LS, Yang LZ, Wang XQ, Duan LP (2005) Discovery of huge ancient dammed lake on upstream of Minjiang River in Sichuan, China. J Chengdu Univ Technol Sci Technol Ed 32(1):1–11 (in Chinese)

    Google Scholar 

  • Wang P, Zhang B, Qiu W, Wang J (2011) Soft-sediment deformation structures from the Diexi paleo-dammed lakes in the upper reaches of the Minjiang River, east Tibet. J Asian Earth Sci 40(4):865–872

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84:974–1002

    Google Scholar 

  • Weltje GJ (1997) End-member modeling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem. Math Geol 29(4):503–549

    Article  Google Scholar 

  • Wetzler N, Marco S, Heifetz E (2010) Quantitative analysis of seismogenic shear-induced turbulence in lake sediments. Geology 38(4):303–306

    Article  Google Scholar 

  • Xu XW, Wen XZ, Yu GH, Chen GH, Klinger Y, Hubbard J, Shaw J (2009) Coseismic reverse-and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake, China. Geology 37:515–518

    Article  Google Scholar 

  • Xu C, Xu X, Yao X, Dai F (2014) Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis. Landslides 11(3):441–461

    Article  Google Scholar 

  • Xu HY, Jiang HC, Yu S, Yang H, Chen J (2015) OSL and pollen concentrate 14C dating of dammed lake sediments at Maoxian, east Tibet, and implications for two historical earthquakes in AD 638 and 952. Quatern Int 371:290–299

    Article  Google Scholar 

  • Xu XW, Chen GH, Wang XQ, Chen LC, Ren ZK, Xu C, Wei ZY, Lu RQ, Tang XB, Dong SP, Shi F (2017) Discussion on seismogenic structure of Jiuzhaigou earthquake and its implication for current strain state in the southeastern Qinghai-Tibet Plateau. Chin J Geophys 60(10):4018–4026 (in Chinese)

    Google Scholar 

  • Yang XP, Wu G, Chen LC, Li CY, Chen XL (2016) The seismogenic structure of the April 25, 2015 Mw 7.8 Nepal earthquake in the southern margin of Qinghai-Tibetan Plateau. Chin J Geophys 59(7):2528–2538 (in Chinese)

    Google Scholar 

  • Yang W, Qi W, Zhou J (2018) Decreased post-seismic landslides linked to vegetation recovery after the 2008 Wenchuan earthquake. Ecol Ind 89:438–444

    Article  Google Scholar 

  • Yasuda S, Verdugo R, Konagai K, Sugano T, Villalobos F, Okamura M, Tobita T, Torres A, Towhata I (2010) Geotechnical damage caused by the 2010 Maule, Chile earthquake. Issmge Bull 4(2):16–27

    Google Scholar 

  • Youd TL (1977) Discussion of ‘Brief review of liquefaction during earthquakes in Japan’ by E. Kuribayashi and T. Taatsuoka. Soils Found 17:82–85

    Google Scholar 

  • Yuan XM, Cao ZZ, Sun R, Chen LW, Meng SL, Dong L, Wang WM, Meng FC, Chen HJ, Zhang JY, Cai XG (2009) Chin J Rock Mech Eng 28(6):1288–1296 (in Chinese)

  • Zhang Y, Cheng Y, Yin Y, Lan H, Wang J, Fu X (2014) High-position debris flow: a long-term active geohazard after the Wenchuan earthquake. Eng Geol 180:45–54

    Article  Google Scholar 

  • Zhang YQ, Li HL, Li JH (2016) Reinvestigation on seismogenic structure of the 1933 Diexi Ms7.5 earthquake, eastern margin of the Tibetan Plateau. Geol Rev 62:267–276 (in Chinese)

    Google Scholar 

  • Zhang F, Jin Z, West AJ, An Z, Hilton RG, Wang J, Li G, Densmore A, Yu J, Qiang X, Sun Y, Li L, Gou L, Xu Y, Xu X, Liu X, Pan Y, You C (2019) Monsoonal control on a delayed response of sedimentation to the 2008 Wenchuan earthquake. Sci Adv 5(6):7110

    Article  Google Scholar 

  • Zhong N, Jiang HC, Liang LJ, Xu HY, Peng XP (2017) Paleoearthquake researches via soft sediment deformation of load, ball-and-pillow structure: a review. Geol Rev 63:719–738 (in Chinese)

    Google Scholar 

  • Zhong N, Jiang HC, Li HB, Xu HY, Shi W, Zhang SQ, Wei XT (2019) Last deglacial soft-sediment deformation at Shawan on the eastern Tibetan plateau and implications for deformation processes and seismic magnitudes. Acta Geol Sin Engl Ed 93(2):430–450

    Article  Google Scholar 

  • Zhong N, Li HB, Jiang HC, Lu HJ, Zheng Y, Han S, Ye JC (2020a) Typical soft-sediment deformation structures induced by freeze/thaw cycles: a case study of Quaternary alluvial deposits in the northern Qiangtang Basin, Tibetan Plateau. Acta Geol Sin Engl Ed 94(1):176–188

    Article  Google Scholar 

  • Zhong N, Jiang HC, Li HB, Xu HY, Huang XL (2020b) The genetic types of soft sediment deformation structures and their characteristics in the fluvial-lacustrine sediments, Eastern Tibetan Plateau. Acta Geosci Sin 94(1):23–36 (in Chinese)

    Google Scholar 

  • Zhong N, Jiang HC, Li HB, Xu HY, Liang LJ, Shi W (2020c) End member inversion of Xinmocun lacustrine sediment in the upper reaches of the Min River and its recorded tectonic and climate events. Acta Geol Sin 94(3):968–981 (in Chinese)

    Google Scholar 

  • Zhong N (2017) Earthquake and provenance analysis of the lacustrine sediments in the upper reaches of the Min River during the Late Pleistocene, Institute of Geology, China Earthquake Administration, Beijing, Doctoral thesis, pp 1–181 (in Chinese)

Download references

Acknowledgements

We feel grateful to Phd. Olaf Kolditz for editorial help and anonymous reviewers for valuable comments. We thank Xiufu Qiao, Bizhu He and Zengzhao Feng for helpful discussions that improved the manuscript.

Funding

This research was financially supported by the National Natural Science Foundation of China (42177184, 41807298, 41702372), the China Postdoctoral Science Foundation (2019M650788), the Special Project of Fundamental Scientific Research of the Institute of Geology, China Earthquake Administration (IGCEA1713), and the China Geological Survey (DD20190319, DD20190059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Zhong.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, N., Jiang, H., Li, H. et al. The potential of using soft-sediment deformation structures for quantitatively reconstructing paleo-seismic shaking intensity: progress and prospect. Environ Earth Sci 81, 408 (2022). https://doi.org/10.1007/s12665-022-10504-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-022-10504-8

Keywords

Navigation