Skip to main content
Log in

End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem

  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

Linear mixing models of compositional data have been developed in various branches of the earth sciences (e.g., geochemistry, petrology, mineralogy, sedimentology) for the purpose of summarizing variation among a series of observations in terms of proportional contributions of (theoretical) end members. Methods of parameter estimation range from relatively straightforward normative partitioning by (nonnegative) least squares, to more sophisticated bilinear inversion techniques. Solving the bilinear mixing problem involves the estimation of both mixing proportions and end-member compositions from the data. Normative partitioning, also known as linear unmixing, thus can be regarded as a special situation of bilinear unmixing with (supposedly) known end members. Previous attempts to model linear mixing processes are reviewed briefly, and a new iterative strategy for solving the bilinear problem is developed. This end-member modeling algorithm is more robust and has better convergence properties than previously proposed numerical schemes. The bilinear unmixing solution is intrinsically nonunique, unless additional constraints on the model parameters are introduced. In situations where no a priori knowledge is available, the concept of an “ optimal ” solution may be used. This concept is based on the trade-off between mathematical and geological feasibility, two seemingly contradictory but equally desirable requirements of the unmixing solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitchison, J., 1986, The statistical analysis of compositional data: Chapman & Hall, London, 416 P.

    Google Scholar 

  • Aitchison, J., and Shen, S. M., 1984, Measurement error in compositional data: Math. Geology, v. 16, no. 6, p. 637–650.

    Article  Google Scholar 

  • Albaréde, F., and Provost, A., 1977, Petrological and geochemical mass-balance equations: an algorithm for least-squares fitting and general error analysis: Computers & Geosciences, v. 3, no. 3, p. 309–326.

    Article  Google Scholar 

  • Banks, R., 1979, The use of linear programming in the analysis of petrological mixing problems: Contributions to Mineralogy and Petrology, v. 70, no. 3, p. 237–244.

    Article  Google Scholar 

  • Bezdek, J. C., Ehrlich, R., and Full, W. E., 1984, FCM: the fuzzy c-means clustering algorithm: Computers & Geosciences, v. 10, no. 2-3, p. 191–203 (+ Erratum, v. 11, no. 5, p. 660).

    Article  Google Scholar 

  • Blatt, H., 1967, Provenance determinations and recycling of sediments: Jour. Sedimentary Petrology, v. 37, no. 4, p. 1031–1044.

    Google Scholar 

  • Bryan, W. B., Finger, L. W., and Chayes, F., 1969, Estimating proportions in petrographie mixing equations by least squares approximation: Science, v. 163, no. 3870, p. 926–927.

    Article  Google Scholar 

  • Burt, C. L., 1937, Correlations between persons: British Jour. Psychology, v. 28, p. 56–96.

    Google Scholar 

  • Butler, J. C., 1979, Effects of closure on the measures of similarity between samples: Math. Geology, v. 11, no. 4, p. 431–440.

    Article  Google Scholar 

  • Chatterjee, A., Sarkar, S. S., Nandy, S., and Saha, A. K., 1989, A quadratic programming approach for solving petrological mixing models: Indian Jour. Earth Sciences, v. 16, no. 2, p. 104–118.

    Google Scholar 

  • Chayes, F., 1968, A least squares approximation for estimating the amounts of petrographic partition products: Mineralogica et Petrographica Acta, v. 14, p. 111–114.

    Google Scholar 

  • Clarke, T. L., 1978, An oblique factor analysis solution for the analysis of mixtures: Math. Geology, v. 10, no. 2, p. 225–241.

    Article  Google Scholar 

  • Cohen, D., and Ward, C. R., 1991, SEDNORM-A program to calculate a normative mineralogy for sedimentary rocks based on chemical analyses: Computers & Geosciences, v. 17, no. 9, p. 1235–1253.

    Article  Google Scholar 

  • Cross, W., Iddings, J. P., Pirrson, L. V., and Washington, H. S., 1902, A quantitative chemicomineralogical classification and nomenclature of igneous rocks: Jour. Geology, v. 10, no. 6, p. 555–690.

    Google Scholar 

  • Davis, J. C., 1986, Statistics and data analysis in geology (2nd ed.): John Wiley & Sons, New York, 646 p.

    Google Scholar 

  • De Leeuw, J., and Van der Heijden, P. G. M., 1988, The analysis of time budgets with a latent time-budget model,in Diday, E., and others, eds., Data analysis and informatics 5: North Holland Publishers, Amsterdam, p. 159–166.

    Google Scholar 

  • De Leeuw, J., Van der Heijden, P. G. M., and Verboon, P., 1990, A latent time-budget model: Statistica Neerlandica, v. 44, no. 1, p. 1–22.

    Article  Google Scholar 

  • Dymond, J., 1981, Geochemistry of Nazca Plate surface sediments: an evaluation of hydrothermal, biogenic, detrital, and hydrogenous sources,in Kulm, L. D., and others, eds., Nazca Plate: Crustal formation and Andean convergence: Geol. Soc. America Mem. 154, p. 133–174.

  • Dymond, J., Lyle, M., Finney, B., Piper, D. Z., Murphy, K., Conrad, R., and Pisias, N., 1984, Ferromanganese nodules from MANOP sites H, S, and R-Control of mineralogica] and chem- ical composition by multiple accretionary processes: Geochimica et Cosmochimica Acta, v. 48, no. 5, p. 931–949.

    Article  Google Scholar 

  • Ehrlich, R., and Full, W. E., 1987, Sorting out geology-Unmixing mixtures,in Size, W. B., ed., Use and abuse of statistical methods in the earth sciences: Intern. Assoc. Math. Geology, Studies in Math. Geology no. 1, Oxford Univ. Press, New York and Oxford, p. 33–46.

    Google Scholar 

  • Full, W. E., and Ehrlich, R., 1986, Comment on “ An objective technique for determining end- member compositions and for partitioning sediments according to their sources ”: Geochimica et Cosmochimica Acta, v. 50, no. 6, p. 1303.

    Article  Google Scholar 

  • Full, W. E., Ehrlich, R., and Klovan, J. E., 1981, EXTENDED QMODEL-Objective definition of external endmembers in the analysis of mixtures: Math. Geology, v. 13, no. 4, p. 331–344.

    Article  Google Scholar 

  • Full, W. E., Ehrlich, R., and Bezdek, J. C., 1982, FUZZY QMODEL-A new approach for linear unmixing: Math. Geology, v. 14, no. 3, p. 259–270.

    Article  Google Scholar 

  • Garrels, R. M., and Mackenzie, F. T., 1971, Evolution of sedimentary rocks: W. W. Norton. New York, 397 p.

    Google Scholar 

  • Gray N. H., 1973, Estimation of parameters in petrologic materials balance equations: Math. Geology, v. 5, no. 3, p. 225–236.

    Article  Google Scholar 

  • Hadley, G., 1961, Linear algebra: Addison-Wesley Publ. Co., Reading, Massachusetts, 290 p.

    Google Scholar 

  • Hamann, I. M., and Herzfeld, U. C., 1991, On the effects of pre-analysis standardization: Jour. Geology, v. 99, no. 4, p. 621–631.

    Article  Google Scholar 

  • Harvey, P. K., and Lovell, M. A., 1992, Downhole mineralogy logs: mineral inversion methods and the problem of compositional colinearity,in Hurst, A., and others, eds., Geological ap- plications of wireline logs II: Geol. Soc. Spec. Publ. 65, p. 361–368.

  • Heath, G. R., and Dymond, J., 1977, Genesis and transformation of metalliferous sediments from the East Pacific Rise, Bauer Deep, and Central Basin, northwest Nazca plate: Geol. Soc. America Bull., v. 88, no. 5, p. 723–733.

    Article  Google Scholar 

  • Herron, M. M., 1986, Mineralogy from geochemical well logging: Clays & Clay Minerals, v. 34, no. 2, p. 204–213.

    Article  Google Scholar 

  • Hodgson, M., and Dudeney, A. W. L., 1984, Estimation of clay proportions in mixtures by X-ray diffraction and computerized chemical mass balance: Clays & Clay Minerals, v. 32, no. 1, p. 19–28.

    Article  Google Scholar 

  • Imbrie, J., 1963, Factor and vector analysis programs for analyzing geologic data: Tech. Rept. 6, ONR Task No. 389–135, Office of Naval Research, Geography Branch, 83 p.

  • Imbrie, J., and Poldervaart, A., 1959, Mineral compositions calculated from chemical analyses of sedimentary rocks: Jour. Sedimentary Petrology, v. 29, no. 4, p. 588–595.

    Google Scholar 

  • Imbrie, J., and Purdy, E. G., 1962, Classification of modem Bahamian carbonate sediments,in Ham, W. E., ed., Classification of carbonate rocks-A symposium: Am. Assoc. Petroleum Geol. Mem. 1, p. 253–272.

  • Imbrie, J., and Van Andel, T. H., 1964, Vector analysis of heavy mineral-data: Geol. Soc. Am. Bull., v. 75, no. 11, p. 1131–1156.

    Article  Google Scholar 

  • Johnsson, M. J., Stallard, R. F., and Meade, R. H., 1988, First-cycle quartz arenites in the Orinoco River basin, Venezuela and Colombia: Jour. Geology, v. 96, no. 3, p. 263–277.

    Google Scholar 

  • Jöreskog, K. G., Klovan, J. E., and Reyment, R. A., 1976, Geological factor analysis: Methods in Geomathematics no. 1, Elsevier Science Publ., Amsterdam, 178 p.

    Google Scholar 

  • Kelsey, C. H., 1965, Calculation of the CIPW norm: Mineralogical Magazine, v. 34, p. 276–282.

    Article  Google Scholar 

  • Klovan, J. E., and Imbrie, J., 1971, An algorithm and FORTRAN-IV program for large-scale Q-mode factor analysis and calculation of factor scores: Math. Geology, v. 3, no. 1, p. 61–77.

    Article  Google Scholar 

  • Klovan, J. E., and Miesch, A. T., 1976, Extended CABFAC and QMODEL computer programs for Q-mode factor analysis of compositional data: Computers & Geosciences, v. 1, no. 3, p. 161–178.

    Article  Google Scholar 

  • Laube, N., Hergarten, S., and Neugebauer, H. J., 1996, MODUSCALC-A computer program to calculate a mode from a geochemical analysis: Computers & Geosciences, v. 22, no. 6, p. 631–637.

    Article  Google Scholar 

  • Lawson, C. L. and Hanson, R. J., 1974, Solving least squares problems: Prentice-Hall, Englewood Cliffs, New Jersey, 340 p.

    Google Scholar 

  • Leinen, M., and Pisias, N., 1984, An objective technique for determining end-member compositions and for partitioning sediments according to their sources: Geochimica et Cosmochimica Acta, v. 48, no. 1, p. 47–62.

    Article  Google Scholar 

  • Leinen, M., and Pisias, N., 1986, Reply to critical comment on “ An objective technique for determining end-member compositions and for partitioning sediments according to their sources ”: Geochimica et Cosmochimica Acta, v. 50, no. 6, p. 1305–1306.

    Article  Google Scholar 

  • LeMaitre, R. W., 1979, A new generalised petrological mixing model: Contributions to Mineralogy and Petrology, v. 71, no. 2, p. 133–137.

    Article  Google Scholar 

  • LeMaitre, R. W., 1981, GENMIX-A generalized petrological mixing model program: Computers & Geosciences, v. 7, no. 3, p. 229–247.

    Article  Google Scholar 

  • Manson, V., and Imbrie, J., 1964, FORTRAN program for factor and vector analysis of geologic data using an IBM 7090 or 7094/1401 computer system: Kansas Geol. Survey Spec. Distrib. Publ. 13, 46 p.

  • Menke, W., 1984, Geophysical data analysis: discrete inverse theory: Academic Press, Orlando, 260 p.

    Google Scholar 

  • Merodio, J. C., Spalletti, L. A., and Bertone, L. M., 1992, A FORTRAN program for the cal- culation of normative composition of clay minerals and pelitic rocks: Computers & Geosci- ences, v. 18, no. 1, p. 47–61.

    Article  Google Scholar 

  • Miesch, A. T., 1962, Computing mineral compositions of sedimentary rocks from chemical anal- yses: Jour. Sedimentary Petrology, v. 32, no. 2, p. 217–225.

    Google Scholar 

  • Miesch, A. T., 1976a, Q-mode factor analysis of geochemical and petrologic data matrices with constant row sums: U.S. Geol. Survey Prof. Paper 574-G, 47 p.

  • Miesch, A. T., 1976b, Q-mode factor analysis of compositional data: Computers & Geosciences, v. 1, no. 3, p. 147–159.

    Article  Google Scholar 

  • Miesch, A. T., 1976c, Interactive computer programs for petrologic modeling with extended Q- mode factor analysis: Computers & Geosciences, v. 2, no. 4, p. 439–492.

    Article  Google Scholar 

  • Miesch, A. T., 1980, Scaling variables and interpretation of eigenvalues in principal component analysis of geologic data: Math. Geology, v. 12, no. 6, p. 523–538.

    Article  Google Scholar 

  • Miesch, A. T., 1981, Computer methods for geochemical and petrologic mixing problems,in Merriam, D. F., ed., Computer applications in the earth sciences-an update of the 70’s: Plenum Press, New York, p. 243–265.

    Google Scholar 

  • Nicholls, G. D., 1962, A scheme for recalculating the chemical analysis of argillaceous rocks for comparative purposes: American Mineralogist, v. 47, no. 1-2, p. 34–46.

    Google Scholar 

  • Owen, R. M., 1987, Geostatistical problems in marine placer exploration,in Teleki, P. G., and others, eds., Marine minerals: D. Reidel Publ. Co., Dordrecht, The Netherlands, p. 533–540.

    Google Scholar 

  • Pearson, M. J., 1978, Quantitative clay mineralogical analyses from the bulk chemistry of sedi- mentary rocks: Clays & Clay Minerals, v. 26, no. 6, p. 423–433.

    Article  Google Scholar 

  • Perry, K. Jr., 1967, An application of linear algebra to petrologic problems: Part I. Mineral clas- sification: Geochimica et Cosmochimica Acta, v. 31, no. 6, p. 1043–1078.

    Article  Google Scholar 

  • Philip, G. M., and Watson, D. F., 1988, Angles measure compositional differences: Geology, v. 16, no. 11, p. 976–979.

    Article  Google Scholar 

  • Preisendorfer, R. W., 1988, Principal component analysis in meterology and oceanography: De- velopments in atmospheric science 17: Elsevier Science Publ., Amsterdam, 425 p.

    Google Scholar 

  • Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1989, Numerical recipes- The art of scientific computing (FORTRAN version): Cambridge Univ. Press, Cambridge, 702 P.

    Google Scholar 

  • Provost, A., and Allégre, C. J., 1979, Process identification and search for optimal differentiation parameters from major element data: General presentation with emphasis on the fractional crystallisation process: Geochimica et Cosmochimica Acta, v. 43, no. 4, p. 487–501.

    Article  Google Scholar 

  • Reid, M. J., Gancarz, A. J., and Albee, A. L., 1973, Constrained least-squares analysis of petrologic problems with an application to lunar sample 12040: Earth and Planetary Science Letters, v. 17, no. 2, p. 433–445.

    Article  Google Scholar 

  • Renner, R. M., 1988, On the resolution of compositional datasets into convex combinations of extreme vectors: Tech. Rept. No. 88/02, Inst. Statistics and Operations Research, Victoria Univ. Wellington, New Zealand, 49 p.

    Google Scholar 

  • Renner, R. M., 1991, An examination of the use of the logratio transformation for the testing of endmember hypotheses: Math. Geology, v. 23, no. 4, p. 549–563.

    Article  Google Scholar 

  • Renner, R. M., 1993a, The resolution of a compositional dataset into mixtures of fixed source compositions: Appl. Statist., Jour. Roy. Stat. Soc, Ser. C, v. 42, no. 4, p. 615–631.

    Google Scholar 

  • Renner, R. M., 1993b, A constrained least-squares subroutine for adjusting negative estimated element concentrations to zero: Computers & Geosciences, v. 19, no. 9, p. 1351–1360.

    Article  Google Scholar 

  • Renner, R. M., 1995, The construction of extreme compositions. Math. Geology, v. 27, no. 4, p. 485–497.

    Article  Google Scholar 

  • Renner, R. M., 1996, An algorithm for constructing extreme compositions. Computers & Geo- sciences, v. 22, no. 1, p. 15–25.

    Google Scholar 

  • Renner, R. M., Glasby, G. P., Manheim, F. T., and Lane-Bostwick, C. M., 1989, A partitioning process for geochemical datasets,in Agterberg, F. P., and Bonham-Carter, G. F., eds., Sta- tistical applications in the earth sciences: Geol. Survey Canada Paper 89–9, p. 319–328.

  • Ripley, B. D., 1990, Unmixing finite mixtures: unpubl. rept. BP Research, Sunbury, 16 p.

  • Rock, N. M. S., 1987, ROBUST: an interactive FORTRAN 77 package for exploratory data analysis via robust estimates of location and scale, tests for normality and outlier assessment: Computers & Geosciences, v. 13, no. 5, p. 463–494.

    Article  Google Scholar 

  • Rock, N. M. S., 1988, Numerical geology: a source guide, glossary and selective bibliography to geological uses of computers and statistics: Lecture notes in earth sciences 18, Springer-Verlag, Berlin, 427 p.

    Google Scholar 

  • Russell, J. K., 1986, A FORTRAN 77 computer program for the least squares analysis of chemical data in Pearce variation diagrams: Computers & Geosciences, v. 12, no. 3, p. 327–338.

    Article  Google Scholar 

  • Stornier, J. C., and Nicholls, J., 1978, XLFRAC-A program for the interactive testing of magmatic differentiation models: Computers & Geosciences, v. 4, no. 2, p. 143–159.

    Article  Google Scholar 

  • Trochimczyk, J., and Chayes, F., 1977, Sampling variation of principal components: Math. Ge- ology, v. 9, no. 5, p. 497–506.

    Article  Google Scholar 

  • Van der Heijden, P. G. M., 1994, End-member analysis and latent budget analysis (letter to the editor): Appl. Statist., Jour. Roy. Stat. Soc, Ser. C., v. 43, no. 3, p. 527–528.

    Google Scholar 

  • Van der Heijden, P. G. M., Mooijaart, A., and De Leeuw, J., 1992, Constrained latent budget analysis,in Clogg, C. C., ed., Sociological methodology 1992, vol. 22, Basil Blackwell, Cambridge, p. 279–320.

    Google Scholar 

  • Weltje, G. J., 1994, Provenance and dispersal of sand-sized sediments: reconstruction of dispersal patterns and sources of sand-sized sediments by means of inverse modelling techniques: unpubl. doctoral dissertation, Faculty of Earth Sciences, Utrecht University, Geologica Ultraiectina 121, 208 p.

  • Weltje, G. J., 1995, Unravelling mixed provenance of coastal sands: the Po delta and adjacent beaches of the northern Adriatic Sea as a test case,in Oti, M. N., and Postma, G., eds., Geology of deltas: Balkema, Rotterdam, p. 181–202.

    Google Scholar 

  • Weltje, G. J., Van Ansenwoude, S. O. K. J., and De Boer, P. L., 1996, High-frequency detrital signals in Eocene fan-delta sandstones of mixed parentage (south-central Pyrenees, Spain): a reconstruction of chemical weathering in transit: Jour. Sedimentary Research, v. 66, no. 1, p. 119–131.

    Google Scholar 

  • Williams, D. F., Lerche, I., and Full, W. E., 1988, Isotope chronostratigraphy-theory and meth- ods: Academic Press Geology series, Academic Press, San Diego, 345 p.

    Google Scholar 

  • Woronow, A., 1991a, Endmember unmixing of compositional data: Geochimica et Cosmochimica Acta, v. 55, no. 8, p. 2351–2353.

    Article  Google Scholar 

  • Woronow, A., 1991b, Analysis of mixtures: unpubl. manuscript, 32 p.

  • Wright, T. L., and Doherty, P. C., 1970, A linear programming and least squares computer method for solving petrologic mixing problems: Geol. Soc. America Bull., v. 81, no. 7, p. 1995–2008.

    Article  Google Scholar 

  • Zhou, D., 1987, Robust statistics and geochemical data analysis: Math. Geology, v. 19, no. 3, p. 207–218.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gert Jan Weltje.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weltje, G.J. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem. Math Geol 29, 503–549 (1997). https://doi.org/10.1007/BF02775085

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02775085

Key Words

Navigation