Skip to main content

Advertisement

Log in

An integrated approach for evaluating the flash flood risk and potential erosion using the hydrologic indices and morpho-tectonic parameters

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

An arid climate and lacking adequate flood management systems are the main reasons for flash flood events in arid and semi-arid areas. The study area is a part of the Sinai Peninsula in Egypt, Wadi Gharandal subjected to several flooded events during the past decades. The present study incorporated hydrologic indices and morpho-tectonic parameters to identify the potential sediment accumulation and erosion. Integration of hydrologic indices, stream power index, sediment transport, and topographic wetness indices with morpho-tectonic parameters to produce and detect erosion and sedimentation associated with flash floods is the main objective. Consequently, the geographic information system (GIS) and the fuzzy k-means clustering algorithm were implemented for spatial data classification and management. The applied method revealed that the hydrologic and morphometric parameters play major roles in flash flood contributing factors. The low slope areas are associated with low run-off connected with a high sediment accumulation. Conversely, a high level of erosion is encountered in the steeper slope areas. Furthermore, terrain and lithology are decisive in sediment accumulation and erosion risk in the study area. The present study demonstrates the hydrologic and morpho-tectonic parameters with remote sensing data set are efficient tools in evaluating flash floods, potential erosion, and management, supporting the urban planner for future development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  • Abd El-Aziz MF (2018) Analysis of Hydro-Morphometric of Flash Flood Hazard Map of Wadi Gharandal Basin, Southwestern Sinai Area, Egypt, Using GIS and RS. Bul. Soc. Géog. d’Égypte. Tome XCI

  • Abdallah AM, Darwish M, El Aref M, Helba AA (1992) Lithostratigraphy of the Pre-Cenomanian clastics of north Wadi Qena, Eastern Desert, Egypt. In: Proceedings of the first international conference on geology of the Arab world, Cairo University, Cairo, pp 255–282

  • Abdelkarim A, Gaber AFD, Youssef AM, Pradhan B (2019) Flood hazard assessment of the urban area of Tabuk City, Kingdom of Saudi Arabia by integrating spatial-based hydrologic and hydrodynamic modeling. Sensors 19:1024

    Article  Google Scholar 

  • Abdel-Lattif A, Sherief Y (2012) Morphometric analysis and flash floods of Wadi Sudr and Wadi Wardan, Gulf of Suez, Egypt: using digital elevation model. Arab J Geosci 2012(5):181–195. https://doi.org/10.1007/s12517-010-0156-8

    Article  Google Scholar 

  • Abu El-Magd SA (2019) Flash flood hazard mapping using GIS and bivariate statistical method at wadi Bada’a, Gulf of Suez. Egypt J Geosci Environ Prot 7:372–385

    Google Scholar 

  • Abu El-Magd SA, Amer RA, Embaby A (2020) Multi-criteria decision-making for the analysis of flash floods: a case study of Awlad Toq-Sherq, Southeast Sohag, Egypt. J Afr Earth Sci 162:103709

    Article  Google Scholar 

  • Abu El-Magd SA, Pradhan B, Alamri A (2021a) Machine learning algorithm for flash flood prediction mapping in Wadi El-Laqeita and surroundings, Central Eastern Desert, Egypt. Arab J Geosci. https://doi.org/10.1007/s12517-021-06466-z

    Article  Google Scholar 

  • Abu El-Magd SA, Ali SA, Pham QB (2021b) Spatial modeling and susceptibility zonation of landslides using random forest, naïve bayes and K-nearest neighbor in a complicated terrain. Earth Sci Inform 14:1–17

    Article  Google Scholar 

  • Ali SA, Khatun R, Ahmad A, Ahmad SN (2019) Application of GIS-based analytic hierarchy process and frequency ratio model to flood vulnerable mapping and risk area estimation at Sundarban region, India. Model Earth Syst Environ 5(3):1083–1102

    Article  Google Scholar 

  • Ali SA, Parvin F, Pham QB, Vojtek M, Vojteková J, Costache R, Linh NTT, Nguyen HQ, Ahmad A, Ghorban MA (2020) GIS-based comparative assessment of flood susceptibility mapping using hybrid multi-criteria decision-making approach, naïve Bayes tree, bivariate statistics and logistic regression: a case of Topľa basin, Slovakia. Ecol Indic 117:106620

    Article  Google Scholar 

  • Ali SA, Parvin F, Vojteková J, Costache R, Linh NTT, Pham QB, Vojtek M, Gigović L, Ahmad A, Ghorbani MA (2021) GIS-based landslide susceptibility modeling: a comparison between fuzzy multi-criteria and machine learning algorithms. Geosci Front 12(2):857–876

    Article  Google Scholar 

  • Al-Rawas G, Koch M, El-Baz F (2001) Using GIS for flash flood hazard mapping in Oman. Earth Obs Mag 10(8):18–20

    Google Scholar 

  • Ansari ZR, Rao LA, Yusuf A (2012) GIS based morphometric analysis of yamuna drainage network in parts of Fatehabad area of Agra District, Uttar Pradesh. J Geol Soc India 79:505–514

    Article  Google Scholar 

  • Bajabaa S, Masoud M, Al-Amri N (2014) Flash flood hazard mapping based on quantitative hydrology, geomorphology and GIS techniques (case study of Wadi Al Lith, Saudi Arabia). Arab J Geosci 7(6):2469–2481

    Article  Google Scholar 

  • Bali R, Agarwal KK, Ali SN, Rastogi SK, Krishna K (2012) Drainage morphometry of Himalayan Glacio-fluvial basin, India: hydrologic and neotectonic implications. Environ Earth Sci 66(4):1163–1174

    Article  Google Scholar 

  • Bannari A, El-Battay A, Hameid N, Tashtoush F (2017) Salt-affected soil mapping in an arid environment using semi-empirical model and Landsat-OLI data. Adv Remote Sens 6:260–291

    Article  Google Scholar 

  • Beven KJ, Kirkby MJ (1979) A physically-based variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69

    Article  Google Scholar 

  • Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York, p 256

    Book  Google Scholar 

  • Bishop M (2002) Geomorphic change in high mountains: a western Himalayan perspective. Glop Planet Change 32(4):311–329

    Article  Google Scholar 

  • Bull WB, McFadden LD (1977) Tectonic geomorphology north and south of the Garlock Fault, California. In: Doehring DO (ed) Proceeding of the eighth annual geomorphology symposium of geomorphology in arid regions. State University of New York, Binghamton, pp 115–138

    Google Scholar 

  • Burrough PA, van Gaans PFM, MacMillan RA (2000) High-resolution landform classification using fuzzy k-means. Fuzzy Sets Syst 113:37–52

    Article  Google Scholar 

  • Burrough PA, Wilson JP, van Gaans PFM, Hansen AJ (2001) Fuzzy k-means classification of topo-climatic data as an aid to forest mapping in the Greater Yellowstone Area, USA. Landscape Ecol 16:523–546

    Article  Google Scholar 

  • Cannon PJ (1976) Generation of explicit parameters for a quantitative geomorphic study of Mill Creek drainage basin. Oklahoma Geol Notes 36(1):3–16

    Google Scholar 

  • Carlston CW (1963) Drainage density and streamflow: U.S. GeologicalSurveyProf.Paper422C

  • Chen YR, Yeh CH, Yu B (2011) Integrated application of the analytic hierarchy process and the geographic information system for food risk assessment and food plain management in Taiwan. Nat Hazards 59(3):1261–1276

    Article  Google Scholar 

  • Chorley RJ (1957) Climate and morphometry. J Geol 65:628–638. https://doi.org/10.1086/626468

    Article  Google Scholar 

  • CONOCO (1987) Geological Map of Egypt (scale 1 : 500,000, NH 36 NE South Sinai and NH 36 SW Beni Suef)

  • Costache R (2019) Flash-flood potential assessment in the upper and middle sector of Prahova river catchment (Romania). A comparative approach between four hybrid models. Sci Total Environ 659:1115–1134

    Article  Google Scholar 

  • Costache R, Hong H, Pham QB (2020) Comparative assessment of the flash-flood potential within small mountain catchments using bivariate statistics and their novel hybrid integration with machine learning models. Sci Total Environ 711:134514

    Article  Google Scholar 

  • Dano UL, Balogun AL, Matori AN, Wan Yusouf K, Abubakar IR, Said Mohamed MA, Aina YA, Pradhan B (2019) Flood susceptibility mapping using GIS-based analytic network process: a case study of Perlis, Malaysia. Water 11:615. https://doi.org/10.3390/w11030615

    Article  Google Scholar 

  • Dymond JR, Harmsworth GR (1994) Towards automated land resource mapping using digital models. ITC J 2:129–138

    Google Scholar 

  • Egyptian General Petroleum Corporation EGPC (1964) Oligocene and Miocene rock stratigraphy of the Gulf of Suez region. Report of the Stratigraphic Committee

  • El Bastawesy M, Habeebullah T, Balkhair K, Ascoura I (2013) Modelling flash floods in arid urbanized areas: Makkah (Saudi Arabia). Science Et Changements Planétaires/sécheresse 24(3):171–181

    Google Scholar 

  • El-Behiry MG, Shedid AA, El-Huseiny M (2005) Integrated GIS and remote sensing for runoff hazard analysis in Ain Sukhna industrial area. Egypt Earth Sci 15:17–42

    Google Scholar 

  • El-Gammal RM (1984) Geological studies on the stratigraphic succession of Umm Bogma district, west central Sinai, Egypt. M.Sc. Thesis. Cairo University, Egypt, p 180

  • Fisher PF, Pathirana S (1990) The evaluation of fuzzy membership of land cover classes in the suburban zone. Remote Sens Environ 34:121–132

    Article  Google Scholar 

  • Gabr S, El Bastawesy M (2015) Estimating the flash flood quantitative parameters affecting the oil-fields infrastructures in Ras Sudr, Sinai, Egypt, during the January 2010 event. Egypt J Remote Sens Space Sci 18(2):137–149

    Google Scholar 

  • Gad MA (1996) Hydrology of Wadies in Sinai. M.Sc. Thesis, Faculty of Science, Ain Shams University, Egypt

  • Gawad WA, Gaafar I, Sabour AA (1986) Miocene stratigraphic nomenclature in the Gulf of Suez region. In: Egyptian general petroleum corporation 8th exploration conference, pp 1–20

  • Grohmann CH, Riccomini C, Alves FM (2007) SRTM-based morphotectonic analysis of the Pocos de Caldas Alkaline Massif southeastern Brazil. Comput Geosci 33:10–19

    Article  Google Scholar 

  • Hasanein AM (1989) Geology of water resources in Wadi Sudr Wadi Gharandal area, Gulf of Suez region, Sinai Peninsula Egypt. M.Sc. Thesis, Faculty of Science, Ain Shams University, Egypt

  • Heybroek F (1965) The Red Sea Miocene evaporite basin. In: Salt basins around Africa. Inst. Petrol. Lond., pp 17–40

  • Horton RE (1932) Drainage basin characteristics. Am Geophys Union Trans 13:350–361

    Article  Google Scholar 

  • Horton RE (1945) Erosional development of stream and their drainage basin: Hydrological approach to quantitative morphology. Bull Geophys Soc Am 56:275–370

    Article  Google Scholar 

  • Lindsay JB, Seibert J (2013) Measuring the significance of a divide to local drainage patterns. Int J Geogr Inf Sci 27(7):1453–1468

    Article  Google Scholar 

  • MacMillan RA, Pettapiece WW, Nolan SC, Goddard TW (2000) A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic. Fuzzy Sets Syst 113:81–109

    Article  Google Scholar 

  • Maeda EE, Heiskanen J, Thijs KW, Pellikka PK (2014) Season-dependence of remote sensing indicators of tree species diversity. Remote Sens Lett 5(5):404–412

    Article  Google Scholar 

  • Mason DC, Speck R, Devereux B, Schumann GJ-P, Neal JC, Bates PD (2010) Flood detection in urban areas using TerraSAR-X. IEEE Trans Geosci Remote Sens 48:882–894. https://doi.org/10.1109/TGRS.2009.2029236

    Article  Google Scholar 

  • Masoud M, Niyazi B, Elfeki A, Zaidi S (2014) Mapping of flash flood hazard prone areas based on integration between physiographic features and GIS techniques (case study of Wadi Fatimah, Saudi Arabia). In: 6th International conference on water resources and the arid environments (ICWRAE 6), pp 334–347

  • McBratney AB, deGruijter JJ (1992) A continuum approach to soil classification by modified fuzzy k-means with extragrades. J Soil Sci 43:159–175

    Article  Google Scholar 

  • McBratney AB, Moore AW (1985) Application of fuzzy sets to climatic classification. Agric for Meteorol 35:165–185

    Article  Google Scholar 

  • Melton MA (1957) An analysis of the relations among elements of climate, surface properties, and geomorphology Ibid. Technical Report No. 1 1

  • Melton MA (1958) An analysis of the relation among elements of climates, surface properties and geomorphology, project NR 389-042, technical report 11. Columbia University, department of Geology, New York

  • Mesa LM (2006) Morphometric analysis of a subtropical Andean basin (Tucuman, Argentina). Environ Geol 50(8):1235–1242

    Article  Google Scholar 

  • Misak RF, Atwa SM, Sallouma MK, Hassanein AH (1995) Geology and water quality of the groundwater supplies in Sudr-Gharandal area, Gulf of Suez Egypt. Bull Fac Sci Assiut Univ 24(2-F):1–21

    Google Scholar 

  • Morad NA (2016) Assessment of the rainfall storm events of January 2010 and March 2014 for the catchment modeling of wadi El Arish and wadi Wardan basins, Sinai, Egypt. Egyptian J Desert Res 66(1):137–168

    Article  Google Scholar 

  • Moore ID, Wilson JP (1992) Length-slope factors for the Revised Universal Soil Loss Equation: simplified method of estimation. J Soil Water Conserv 47:423–428

    Google Scholar 

  • Moore ID, Gessler PE, Nielsen GA, Peterson GA (1993) Soil attribute prediction using terrain analysis. Soil Sci Soc Am J 57:443–452

    Article  Google Scholar 

  • Morisawa ME (1958) Measurement of drainage basin outline form. J Geol 66:587–591

    Article  Google Scholar 

  • Odeh IOA, McBratney AB, Chittleborough DJ (1992) Soil pattern recognition with fuzzy c-means: application to classification and soil-landform interrelationship. Soil Sci Soc Am J 56:505–516

    Article  Google Scholar 

  • Odeh T, Gloaguen R, Mohammad AH, Schirmer M (2016) Structural control on drainage network and catchment area geomorphology in the Dead Sea area: an evaluation using remote sensing and geographic information systems in the Wadi Zerka Ma’in catchment area (Jordan). Environ Earth Sci 75:482. https://doi.org/10.1007/s12665-016-5447-2

    Article  Google Scholar 

  • Othman AA, Obaid AK, Al-Manmi DAM, Al-Maamar AF, Hasan SE, Liesenberg V, Shihab AT, Al-Saady YI (2021) New insight on soil loss estimation in the northwestern region of the zagros fold and thrust belt. ISPRS Int J Geo-Inf 2021(10):59. https://doi.org/10.3390/ijgi10020059

    Article  Google Scholar 

  • Othman AA, Al-Maamar AF, Al-Manmi DAM, Veraldo L, Hasan SE, Obaid AK, Al-Quraishi AMF (2020) GIS-based modeling for selection of dam sites in the Kurdistan Region, Iraq. ISPRS Int J Geo-Inf. 9(4):244

  • Pal R, Pani P (2016) Seasonality, barrage (Farakka) regulated hydrology and food scenarios of the Ganga River: a study based on MNDWI and simple Gumbel model. Model Earth Syst Environ. https://doi.org/10.1007/s40808-016-0114-x

    Article  Google Scholar 

  • Pant N, Dubey RK, Bhatt A, Rai SP, Semwal P (2020) Mishra S (2020) Soil erosion and flash flood hazard zonation using morphometric and morphotectonic parameters in upper Alaknanda river basin. Nat Hazards 103:3236–3301

    Article  Google Scholar 

  • Pham BT, Avand M, Janizadeh S, Phong TV, Al-Ansari N, Ho LS et al (2020) GIS based hybrid computational approaches for flash flood susceptibility assessment. Water 12(3):683

    Article  Google Scholar 

  • Pham QB, Achour Y, Ali SA, Parvin F, Vojtek M, Vojteková J, Al-Ansari N, Achu AL, Costache R, Khedher KM, Anh DT (2021) A comparison among fuzzy multi-criteria decision making, bivariate, multivariate and machine learning models in landslide susceptibility mapping. Geomat Nat Haz Risk 12(1):1741–1777

    Article  Google Scholar 

  • Pike RJ, Wilson SE (1971) Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Geol Soc Amer Bull 82:1079–1084

    Article  Google Scholar 

  • Pradhan B, Hagemann U, Tehrany S, Prechtel N (2014) An easy to use ArcMap based texture analysis program for extraction of flooded areas from TerraSAR-X satellite image. Comput Geosci 63:34–43

    Article  Google Scholar 

  • Purser BH, Orszag-Sperber F, Plaziat JC, Rioual M (1993) Plioquaternary tectonics and sedimentation in the Sw Gulf of Suez and N. Red Sea. In: Thorweihe and Schandelmeier (eds) Geoscientific, A. A. Balkema, Rotterdam, pp 259–262

  • Rodrıguez-Iturbe I, Rinaldo A (1997) Fractal River Basins: chance and self-organization. Cambridge University Press, New York, p 564

    Google Scholar 

  • Ruspini EH (1969) A new approach to clustering. Inf Control 15:22–32

    Article  Google Scholar 

  • Said R (1962) The Geology of Egypt. Elsevier, Amsterdam

    Google Scholar 

  • Sar N, Chatterjee S, Adhikari MD (2015) Integrated remote sensing and GIS based spatial modelling through analytical hierarchy process (AHP) for water logging hazard, vulnerability and risk assessment in Keleghai river basin, India. Model Earth Syst Environ 1:31. https://doi.org/10.1007/s40808-015-0039-9

    Article  Google Scholar 

  • Schumm SA (1954) Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey, Columbia University, Dept. of Geology Technical Report No. 8, Office of Naval Research Contract N6 ONR 271

  • Schumn SA (1956) Evolution of drainage systems and slopes in Badlands at Perth Amboy. New Jersey. Geol Soc Am Bull 67:597–646

    Article  Google Scholar 

  • Schumm SA (1963a) Sinuosity of alluvial rivers on the great plains. Geol Soc Am Bull 74:1089–1100

    Article  Google Scholar 

  • Schumm SA (1963b) The disparity between present r a t e s o f denudation and orogeny: U. S. Geology Survey Prof. Paper 454-H

  • Sherve R (1966) Statistical law of stream numbers. J Geology 74:17–37

    Article  Google Scholar 

  • Singh O, Sarangi A, Sharma MC (2008) Hypsometric integral estimation methods and its relevance on erosion status of north-western lesser Himalayan watersheds. Water Resour Manag 22(II):1545–1560

    Article  Google Scholar 

  • Smith KG (1950) Standards for grading texture of erosional topography. Am J Sci 248:655–668

    Article  Google Scholar 

  • Stephenson D (2003) Water resources management. Taylor and Francis, Oxfordshire, p 323

    Book  Google Scholar 

  • Strahler AN (1952) Hypsometric (area-altitude) analysis of erosional topography. Geol Soc Am Bull 63:1117–1142

    Article  Google Scholar 

  • Strahler AN (1954a) Quantitative geomorphology of erosional landscapes, C.-R. In: 19th International Geological Conference, Algiers, 1952, sec. 13, pt. 3, pp. 341–354

  • Strahler AN (1954b) Statistical analysis in geomorphic research. Geology 62:1–25

    Google Scholar 

  • Strahler AN (1954c) Empirical and explanatory methods in physical geography. Prof Geogr 6(1):4–8. https://doi.org/10.1111/j.0033-0124.1954.061_4.x

    Article  Google Scholar 

  • Strahler AN (1964) Quantitative geomorphology of drainage basin and channel networks. In: Chow VT (ed) Handbook of applied hydrology. McGraw Hill Book Co., New York, pp 4–76

    Google Scholar 

  • Subramanya K (2006) Engineering hydrology. Tata McGraw-Hill, New Delhi, p 392

    Google Scholar 

  • Van der Beek P, Champel B, Mugnier L (2002) Control of detachment dip on drainage development in regions of active fault-propagation folding. Geology 30:471–474

    Article  Google Scholar 

  • Vijith H, Satheesh R (2006) GIS based morphometric analysis of two major upland sub-watersheds of Meenachil River, Kerala. J Indian Soc Remote Sens 34(2):181–185

    Article  Google Scholar 

  • Vivoni R, Benedetto F, Grimaldi S, Eltahir E (2008) Hypsometric control on surface and subsurface runoff. Water Resour Res 44:12502–12512

    Article  Google Scholar 

  • Vojtek M, Vojteková J (2018) Flood maps and their potential role in local spatial planning: a case study from Slovakia. Water Policy 20(5):1042–1058

    Article  Google Scholar 

  • Wade AJ, Smith SJ, Black ECL, Brayshaw DJ, Holmes PAC, ElBastawesy M, Rambeau CMC, Mithen SJ (2012) A new method for the determination of Holocene palaeohydrology. J Hydrol. https://doi.org/10.1016/j.jhydrol.2011.10.033

    Article  Google Scholar 

  • Wahid A, Madden M, Khalaf F, Fathy I (2016) Geospatial analysis for the determination of hydromorphological characteristics and assessment of flash flood potentiality in Arid Coastal Plains: A case in Southwestern Sinai. Egypt. Earth Sci Res J 20(1):1–9

    Article  Google Scholar 

  • Wang Y, Hong H, Chen W, Li S, Pamučar D, Gigović L, Drobnjak S, Tien Bui D, Duan H (2019) A hybrid GIS multi-criteria decision-making method for food susceptibility mapping at Shangyou, China. Remote Sens 11:62. https://doi.org/10.3390/rs11010062

    Article  Google Scholar 

  • Wilson T, Dominic J (1998) Fractal interrelationships between topography and structure. Earth Surf Proc Land 23:509–525

    Article  Google Scholar 

  • Youssef AM, Hegab MA (2005) Using geographic information systems and statistics for developing a database management system of the flood hazard for Ras Gharib area, Eastern Desert, Egypt. In: The fourth international conference on the geology of Africa, Assiut, Egypt, November, vol 2, pp 1–15

  • Youssef AM, Maerz N (2013) Overview of some geological hazards in the Saudi Arabia. Environ Earth Sci 70:3115–3130. https://doi.org/10.1007/s12665-013-2373-4

    Article  Google Scholar 

  • Youssef AM, Abdel Moneim AA, Abu El-Maged SA (2005) Flood hazard assessment and its associated problems using geographic information systems, Sohag Governorate, Egypt. In: The fourth international conference on the geology of Africa, Assiut, Egypt, November, vol 1, pp 1–17

  • Youssef AM, Maerz NH, Hassan AM (2009) Remote sensing applications to geological problems in Egypt: case study, slope instability investigation, Sharm El Sheikh/Ras-Nasrani Area, Southern Sinai. Landslides 6(4):353–360. https://doi.org/10.1007/s10346-009-0158-3

    Article  Google Scholar 

  • Youssef AM, Al-Kathery M, Pradhan B (2014a) Landslide susceptibility mapping at AlHasher Area, Jizan (Saudi Arabia) using GIS-based frequency ratio and index of entropy models. Geosci J. https://doi.org/10.1007/s12303-014-0032-8

    Article  Google Scholar 

  • Youssef AM, Pradhan B, Jebur MN, El-Harbi HM (2014b) Landslide susceptibility mapping using ensemble bivariate and multivariate statistical models in Fayfa area, Saudi Arabia. Environ Earth Sci 73:3745–3761. https://doi.org/10.1007/s12665-014-3661-3

    Article  Google Scholar 

  • Youssef AM, Pradhan B, Jebur MN, El-Harbi HM (2014c) Landslide susceptibility mapping using ensemble bivariate and multivariate statistical models in Fayfa area, Saudi Arabia. Environ Earth Sci. https://doi.org/10.1007/s12665-014-3661-3

    Article  Google Scholar 

Download references

Funding

No external funding.

Author information

Authors and Affiliations

Authors

Contributions

SAAE-M: conceptualization, writing—original draft, software, formal analysis, visualization, review, editing. HOO: formal analysis; writing—original draft, visualization. SAA: data curation, writing, review and editing. FP: writing—original draft, review, editing. QBP: conceptualization, supervision, writing, review, editing.

Corresponding author

Correspondence to Quoc Bao Pham.

Ethics declarations

Conflict of interest

This manuscript has not been published or presented elsewhere in part or in entirety and is not under consideration by another journal. There are no conflicts of interest to declare.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu El-Magd, S.A., Orabi, H.O., Ali, S.A. et al. An integrated approach for evaluating the flash flood risk and potential erosion using the hydrologic indices and morpho-tectonic parameters. Environ Earth Sci 80, 694 (2021). https://doi.org/10.1007/s12665-021-10013-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-10013-0

Keywords

Navigation