Skip to main content
Log in

Thoron and radon exhalation and emanation from granitic rocks outcropping in the Central Iberian Zone (Portugal)

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Terrestrial radionuclides present in soil, bedrock and building materials are considered the main source of indoor radon (222Rn) and thoron (220Rn). Due to its shorter half-life, 220Rn is often neglected, however, its contribution to the dose received by the population may be significant. Therefore, improving existing knowledge on 220Rn exhalation from bedrock is crucial for an accurate assessment of the risk of exposure to ionizing radiation. In the present work 222Rn and 220Rn exhaled per unit mass (EX) and emanation coefficient (EM) were measured simultaneously in granitic rock samples collected in the Central Iberian Zone. The relationship between the 222Rn and 220Rn EX, EM, the activity concentrations of 226Ra and 224Ra, and bulk density are investigated. 226Ra and 224Ra activity concentration are generally similar between the samples, except in syn-to late-tectonic two mica granites (B2) and porphyritic granodiorites (C1). On average, 222Rn EX and EM are higher than 220Rn EX and EM, despite a similar range. Heterogeneities in 226Ra and 224Ra activity, and 222Rn EX and EM are observed linked to the time of emplacement of granitic intrusions relative to the third deformation phase of the Variscan orogeny. 220Rn EX is homogeneous among different granite types and may exceed 222Rn EX in C1 granites due to a higher activity concentration of 224Ra. No correlation is observed between 226Ra and 224Ra, hindering the correlation between 222 and 220Rn data, which implies that 220Rn must be estimated directly for a proper assessment of 220Rn contribution to the dose received by the population. Bulk density is also different according to granite type, being higher in granites from the C group (granodiorites and biotite), and lower in granites from groups A (pre-Variscan and earlier Variscan granitoids) and B (S-type leucogranites and two mica granites). These differences are closely linked to the distinct geochemical composition and mineralogy of the granitic rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

adapted from LNEG (2010) showing the location of the samples collected. The terrestrial gamma dose rate (TGDR) was retrieved from Batista et al. (2013). TGDR data were collected through both airborne and ground surveys (with hand-carried and vehicle-borne equipment)

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data available by request.

References

  • Anjos RM, Veiga R, Soares T, Santos AMA, Aguiar JG, Frascá MHBO, Brage JAP, Uzêda D, Mangia L, Facure A, Mosquera B (2005) Natural radionuclide distribution in Brazilian commercial granites. Radiat Meas 39(3):245–253. https://doi.org/10.1016/j.radmeas.2004.05.002

    Article  Google Scholar 

  • Antunes IMHR, Neiva AMR, Silva MMVG, Corfu F (2009) The genesis of I- and S-type granitoid rocks of the Early ordovician oledo pluton, central iberian zone (central Portugal). Lithos 111:168–185. https://doi.org/10.1016/j.lithos.2008.07.014

    Article  Google Scholar 

  • Appleton JD (2013) Radon in air and water. In: essentials of medical geology. Springer, pp 239–277

    Book  Google Scholar 

  • Aydin A, Duzgoren-Aydin NS (2002) Indices for scaling and predicting weathering-induced changes in rock properties. Environ Eng Geosci 8(2):121–135. https://doi.org/10.2113/gseegeosci.8.2.121

    Article  Google Scholar 

  • Azevedo MR, Aguado BV (2013) Origem e instalação de granitóides variscos na zona centro-ibérica. In: Dias R, Araújo A, Terrinha P, Kullberg J (eds) Geologia de Portugal. Escolar Editora, pp 377–401

    Google Scholar 

  • Bala P, Kumar V, Mehra R (2017) Measurement of radon exhalation rate in various building materials and soil samples. J Earth Syst Sci 126(31):1–8. https://doi.org/10.1007/s12040-017-0797-z

    Article  Google Scholar 

  • Baskaran M (2016) Radon: a tracer for geological, geophysical and geochemical studies. Springer

    Book  Google Scholar 

  • Batista MJ, Torres L, Leote J, Prazeres C, Saraiva J, Carvalho J (2013) Carta Radiométrica de Portugal (1:500 000). Lab Nac Energia e Geol.

  • Batlle JV, Ulanovsky A, Copplestone D (2017) A method for assessing exposure of terrestrial wildlife to environmental radon (222Rn) and thoron (220Rn). Sci Total Environ 605:569–577. https://doi.org/10.1016/j.scitotenv.2017.06.154

    Article  Google Scholar 

  • Bossew P, Čeliković ICG, Ciotoli GC, Domingos F, Gruber V, Leonardi F, Nikolov J, Pantelić G, Pereira A, Petermann E, Todorović N, Trevisi R (2021) On harmonization of radon maps. Accepted J Eur Radon Assoc.

  • Burkin W, Villert J (2017) Simultaneous Radon/Thoron discrimination using the AlphaGuard. Bertin Instruments, RADN-300-DE001.

  • Carvalho JMF, Carvalho CI, Lisboa JV, Moura AC, Leite MM (2013) Portuguese ornamental stones. Geonovas 26:15–22

    Google Scholar 

  • Carvalho J, Lopes C, Mateus A, Martins L, Goulão M (2018) Planning the future exploitation of ornamental stones in Portugal using a weighed multi-dimensional approach. Resour Policy 59:298–317

    Article  Google Scholar 

  • Chitra N, Danalakshmi B, Supriya D, Vijayalakshmi I, Bala Sundar S, Sivasubramanian K, Baskarana R, Josea MT (2018) Study of Radon and Thoron exhalation from soil samples of different grain sizes. Appl Radiat Isot 133:75–80. https://doi.org/10.1016/j.apradiso.2017.12.017

    Article  Google Scholar 

  • Cuney M (2014) Felsic magmatism and uranium deposits. Bull Soc Géol France 185(2):75–92. https://doi.org/10.2113/gssgfbull.185.2.75

    Article  Google Scholar 

  • Cuney M, Le Fort P, Zhixiang W (1982) Uranium and Thorium geochemistry and mineralogy in the Manaslu leucogranite (Nepal, Himalaya). Geology of granites and their metallogenetic relations. Proceedings of the International Symposium, Nanjing, China.

  • Dias G (2001) Fontes de granitóides Hercínicos da Zona Centro-Ibérica (Norte de Portugal): evidências isotópicas (Sr Nd). Memórias Acad Ciências De Lisboa 39:121–143

    Google Scholar 

  • Dias G, Leterrier J (1994) The genesis of felsic-mafic plutonic associations: a Sr and Nd isotopic study of the hercynian braga granitoid massif. Lithos 32:207–223. https://doi.org/10.1016/0024-4937(94)90040-X

    Article  Google Scholar 

  • Dias G, Simões PP, Ferreira N, Leterrier J (2002) Mantle and crustal sources in the genesis of late-Hercynian granitoids (NW Portugal): geochemical and Sr-Nd isotopic constraints. Gondwana Res 5(2):287–305. https://doi.org/10.1016/S1342-937X(05)70724-3

    Article  Google Scholar 

  • Domingos F, Pereira A (2018) Implications of alteration processes on radon emanation, radon production rate and W-Sn exploration in the Panasqueira ore district. Sci Total Environ 622–623:825–840. https://doi.org/10.1016/j.scitotenv.2017.12.028

    Article  Google Scholar 

  • Domingos F, Cinelli G, Neves L, Pereira A, Braga R, Bossew P, Tollefsen T (2020) Validation of a database of mean uranium, thorium and potassium concentrations in rock samples of Portuguese geological units, generated of literature data. J Environ Radioact 222:106338. https://doi.org/10.1016/j.jenvrad.2020.106338

    Article  Google Scholar 

  • Faheem M (2008) Radon exhalation and its dependence on moisture content from samples of soil and building materials. Radiat Meas 43(8):1458–1462

    Article  Google Scholar 

  • Faísca MC, Teixeira MMGR, Bettencourt AO (1992) Indoor radon concentrations in Portugal-a national survey. Radiat Prot Dosimetry 45(1–4):465–467

    Article  Google Scholar 

  • Ferreira N, Iglesias M, Noronha F, Pereira E, Ribeiro A, Ribeiro M (1987) Granitoides da zona Centro-Ibérica e seu enquadramento geodinâmico. In: Carnicero J, Plaza M, Alonso M (eds) Geologia de los granitoides y rocas associados del macizo hesperico libro homenage a LC Figueirola. Editorial Rueda

    Google Scholar 

  • Friedmann H, Baumgartner A, Bernreiter M, Gräser J, Gruber V, Kabrt F, Kaineder H, Maringer FJ, Ringer W, Seidel C, Wurm G (2017) Indoor radon, geogenic radon surrogates and geology–Investigations on their correlation. J Environ Radioact 166:382–389. https://doi.org/10.1016/j.jenvrad.2016.04.028

    Article  Google Scholar 

  • Fuente M, Rábago D, Goggins J, Fuente I, Sainz C, Foley M (2019) Radon mitigation by soil depressurisation case study radon concentration and pressure field extension monitoring in a pilot house in Spain. Sci Total Environ 695:133746

    Article  Google Scholar 

  • Instituto Geológico e Mineiro (2000) Granitos e rochas similares de Portugal. ISBN 972-98469-5-2, 184 p.

  • Gomes MEP, Neves LJPF, Coelho F, Carvalho A, Sousa M, Pereira AJSC (2011) Geochemistry of granites and metasediments of the urban area of Vila Real (northern Portugal) and correlative radon risk. Environ Earth Sci 64(2):497–502

    Article  Google Scholar 

  • Gomes EM, Silva MMV, Sequeira M, Lopes FC (2017) Representação de rochas graníticas em cartas geológicas de Portugal, do século XIX à atualidade: o exemplo dos granitoides pré-variscos da Região Centro. Memorias Real Soc Española Historia Nat 14:225–244

    Google Scholar 

  • Greeman DJ, Rose AW (1996) Factors controlling the emanation of radon and thoron in soils of the eastern USA. Chem Geol 129(1–2):1–14. https://doi.org/10.1016/0009-2541(95)00128-X

    Article  Google Scholar 

  • Gruber V, Baumann S, Alber O, Laubbichler C, Bossew P, Petermann E, Ciotoli G, Pereira A, Domingos F, Tondeur F, Cinelli G, Fernandez A, Sainz C, Quindos-Poncela L (2021) Comparison of radon mapping methods for the delineation of radon priority areas–an exercise. J Eur Radon Assoc 2:14

    Google Scholar 

  • Harrell FE (2020) Hmisc: Harrell Miscellaneous. R package version 4.4–2. https://CRAN.R-project.org/package=Hmisc.

  • Hassan NM, Hosoda M, Ishikawa T, Sorimachi A, Sahoo SK, Tokonami S, Fukushi M (2009) Radon migration process and its influence factors; review. Japn J Health Phys 44(2):218–231

    Article  Google Scholar 

  • Hassan NM, Hosoda M, Iwaoka K, Sorimachi A, Janik M, Kranrod C, Sahoo S, Ishikawa T, Yonehara H, Fukushi M, Tokonami S (2011) Simultaneous measurement of radon and thoron released from building materials used in Japan. Prog Nuclear Sci Technol 1:404–407. https://doi.org/10.15669/pnst.1.404

    Article  Google Scholar 

  • Hosoda M, Shimo M, Sugino M, Furukawa M, Fukushi M (2007) Effect of soil moisture content on radon and thoron exhalation. J Nucl Sci Technol 44(4):664–672

    Article  Google Scholar 

  • Hosoda M, Shimo M, Sugino M, Furukawa M, Fukushi M, Minami K, Ejiri K (2008) Radon and thoron exhalation rate map in Japan. Conference proceedings of the natural radiation environment, 8th international symposium, American Institute of Physics 1034(1): 177–180.

  • Howard AJ (1993) Measurement of 220Rn and 222Rn emanation rates for solids. Nucl Instrum Methods Phys Res Sect B 73(1):53–62. https://doi.org/10.1016/0168-583X(93)96053-F

    Article  Google Scholar 

  • Inácio M, Pereira V, Pinto M (2008) The soil geochemical atlas of Portugal: overview and applications. J Geochem Explor 98(1–2):22–33

    Article  Google Scholar 

  • IPQ (2008) NP EN 1936: natural stone test methods: determination of real density and apparent density, and of total and open porosity. Instituto Português da Qualidade, p 13

    Google Scholar 

  • Ishimori Y, Lange K, Martin P, Mayya YS, Phaneuf M (2013) Measurement and calculation of radon releases from NORM residues. Technical report series n 474, International atomic energy agency, 103 p.

  • Kanse SD, Sahoo BD, Gaware JJ, Prajith R, Sapra BK (2016) A study of thoron exhalation from monazite-rich beach sands of high background radiation Areas of Kerala and Odisha India. Environ Earth Sci 75(23):1465. https://doi.org/10.1007/s12665-016-6279-9

    Article  Google Scholar 

  • Kemski J, Klingel R, Siehl A, Valdivia-Manchego M (2009) From radon hazard to risk prediction-based on geological maps, soil gas and indoor measurements in Germany. Environ Geol 56(7):1269–1279. https://doi.org/10.1007/s00254-008-1226-z

    Article  Google Scholar 

  • Laboratoire National Henri Becquerel (2021) Atomic and nuclear data. http://www.lnhb.fr/nuclear-data/nuclear-data-table/. (Accessed May 2021).

  • Lima M, Alves C, Sanjurjo-Sánchez J (2015) Gamma radiation in rocks used as building materials: the Braga granite (NW Portugal). Cadernos Lab Xeolóxico De Laxe 38:79–92

    Article  Google Scholar 

  • LNEG (2010) Carta geológica de Portugal à escala 1:1.000.000. Laboratório Nacional de Energia e Geologia (LNEG)

    Google Scholar 

  • Louro A, Peralta L, Soares S, Pereira A, Cunha G, Belchior A, Ferreira L, Gil OM, Louro H, Pinto P, Rodrigues AS, Silva MJ, Teles P (2013) Human exposure to indoor radon: a survey in the region of Guarda Portugal. Radiat Prot Dosim 154(2):237–244

    Article  Google Scholar 

  • Ludovico-Marques M, Chastre C, Vasconcelos G (2012) Modelling the compressive mechanical behaviour of granite and sandstone historical building stones. Constr Build Mater 28(1):372–381

    Article  Google Scholar 

  • Madureira J, Paciência I, Rufo J, Moreira A, de Oliveira Fernandes E, Pereira A (2016) Radon in indoor air of primary schools: determinant factors, their variability and effective dose. Environ Geochem Health 38(2):523–533

    Article  Google Scholar 

  • Magnoni M, Chiaberto E, Prandstatter A, Serena E, Tripodi R (2018) Thoron exhalation rate in stony materials: a simplified approach. Construct Build Mater 173:520–524. https://doi.org/10.1016/j.conbuildmat.2018.04.053

    Article  Google Scholar 

  • Martínez CJR, Aller J, Alonso JL, Bastida F (2009) The iberian variscan orogen. Spanish geological frameworks and geosites: an approach to spanish geological heritage of international relevance. IGME, 13–27.

  • Martins LMO, Gomes MEP, Neves LJPF, Pereira AJSC (2013) The influence of geological factors on radon risk in groundwater and dwellings in the region of Amarante (Northern Portugal). Environ Earth Sci 68(3):733–740

    Article  Google Scholar 

  • Martins LMO, Gomes MEP, Teixeira RJS, Pereira AJSC, Neves LJPF (2016) Indoor radon risk associated to post-tectonic biotite granites from Vila Pouca de Aguiar pluton, northern Portugal. Ecotoxicol Environ Saf 133:164–175. https://doi.org/10.1016/j.ecoenv.2016.07.009

    Article  Google Scholar 

  • Mayya YS, Mishra R, Prajith R, Gole AC, Sapra BK, Chougaonkar MP, Nair RRK, Ramola RC, Karunakara N, Koya PKM (2012) Deposition-based passive monitors for assigning radon, thoron inhalation doses for epidemiological studies. Radiat Prot Dosimet 152(1–3):18–24. https://doi.org/10.1093/rpd/ncs196

    Article  Google Scholar 

  • McNeal JM, Lee DE, Millard HT Jr (1981) The distribution of uranium and thorium in granitic rocks of the basin and range province, Western United States. J Geochem Explor 14:25–40. https://doi.org/10.1016/0375-6742(81)90101-1

    Article  Google Scholar 

  • Megumi K, Mamuro T (1974) Emanation and exhalation of radon and thoron gases from soil particles. J Geophys Res 79(23):3357–3360. https://doi.org/10.1029/JB079i023p03357

    Article  Google Scholar 

  • Miles J (2004) Methods of radon measurement and devices. Proceedings of the 4th European conference on protection against radon at home and at work Conference program and session presentations, Czech Republic, 8 p.

  • Millard SP (2013) EnvStats: An R Package for environmental statistics. Springer. ISBN 978-1-4614-8455-4, https://www.springer.com.

  • Müllerová M, Holý K, Blahušiak P, Bulko M (2018) Study of radon exhalation from the soil. J Radioanal Nucl Chem 315(2):237–241

    Article  Google Scholar 

  • Neiva AMR (2002) Portuguese granites associated with Sn-W and Au mineralizations. Bull-Geol Soc Finland 74(1/2):79–101

    Article  Google Scholar 

  • Neiva AMR, Williams IS, Ramos JMF, Gomes MEP, Silva MMVG, Antunes IMHR (2009) Geochemical and isotopic constraints on the petrogenesis of Early Ordovician granodiorite and Variscan two-mica granites from the Gouveia area, central Portugal. Lithos 111:186–202. https://doi.org/10.1016/j.lithos.2009.01.005

    Article  Google Scholar 

  • Neves LJPF, Barbosa SM, Pereira AJSC (2009) Indoor radon periodicities and their physical constraints: a study in the Coimbra region (Central Portugal). J Environ Radioact 100(10):896–904

    Article  Google Scholar 

  • Oliveira JT, Pereira E, Ramalho M, Antunes MTA, Monteiro JH (1992) Carta geológica de Portugal, à escala 1:500.000. Direção geral de geologia e minas. Serviços geológicos de Portugal.

  • Pereira V, FitzPatrick EA (1995) Cambisols and related soils in north-central Portugal: their genesis and classification. Geoderma 66(3–4):185–212

    Article  Google Scholar 

  • Pereira AJSC, Carter A, Hurford AJ, Neves LJPF, Godinho MM (1998) Evidence for the unroofing history of Hercynian granitoids in central Portugal derived from Late Palaeozoic and mesozoic sedimentary zircons. Adv Fission-Track Geochronol. https://doi.org/10.1007/978-94-015-9133-1_11

    Article  Google Scholar 

  • Pereira AJSC, Neves LJPF, Godinho MM, Dias JMM (2003) Natural radioactivity in Portugal: influencing geological factors and implications for land use planning. Radioprotecção (s Joao Da Talha) 2(2/3):109–120

    Google Scholar 

  • Pereira AJSC, Godinho MM, Neves LJPF (2010) On the influence of faulting on small-scale soil-gas radon variability: a case study in the Iberian Uranium Province. J Environ Radioact 101(10):875–882. https://doi.org/10.1016/j.jenvrad.2010.05.014

    Article  Google Scholar 

  • Pereira AJSC, Barbosa SM, Neves LJPF, Aumento F (2011) Soil-gas radon monitoring in an active granite quarry from central Portugal. Nat Hazard 11(7):1845–1849. https://doi.org/10.5194/nhess-11-1845-2011

    Article  Google Scholar 

  • Pereira A, Lamas R, Miranda M, Domingos F, Neves L, Ferreira N, Costa L (2017) Estimation of the radon production rate in granite rocks and evaluation of the implications for geogenic radon potential maps: a case study in Central Portugal. J Environ Radioact 166:270–277. https://doi.org/10.1016/j.jenvrad.2016.08.022

    Article  Google Scholar 

  • Pereira AJSC, Dias JMM, Neves LJPF, Nero JMG (2004) Modelling of the long-term efficiency of a rehabilitation plan for a uranium mill tailing deposit (Urgeiriça–Central Portugal). Proceedings do 11th international congress of the international radiation protection association (2004), p. 10.

  • Pissara JB (1981) O papel da litologia na cartografia dos solos de Portugal. Boletim Da Soc Geol Portugal 22:261–265

    Google Scholar 

  • Prajith R, Rout RP, Kumbhar D, Mishra R, Sahoo BK, Sapra BK (2019) Measurements of radon (222Rn) and thoron (220Rn) exhalations and their decay product concentrations at Indian Stations in Antarctica. Environ Earth Sci 78(1):35. https://doi.org/10.1007/s12665-018-8029-7

    Article  Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/.

  • Radolić V, Miklavčić I, Sovilj MP, Stanić D, Petrinec B, Vuković B (2019) The natural radioactivity of Istria, Croatia. Radiat Phys Chem 155:332–340. https://doi.org/10.1016/j.radphyschem.2018.08.005

    Article  Google Scholar 

  • Ramola RC, Gusain GS, Rautela BS, Sagar DV, Prasad G, Shahoo SK, Ishikawa T (2012) Levels of thoron and progeny in high background radiation area of south-eastern coast of Odisha India. Radiat Protect Dosim 152(1–3):62–65. https://doi.org/10.1093/rpd/ncs188

    Article  Google Scholar 

  • Ramola RC, Prasad M, Kandari T, Pant P, Bossew P, Mishra R, Tokonami S (2016) Dose estimation derived from the exposure to radon, thoron and their progeny in the indoor environment. Sci Rep 6(31061):1–16. https://doi.org/10.1038/srep31061

    Article  Google Scholar 

  • Revelle W (2020) psych: Procedures for personality and psychological research. Northwestern University, Evanston. https://CRAN.R-project.org/package=psych. (version 2.0.12.)

  • Ribeiro ML, Castro A, Almeida A, Menéndez LG, Jesus A, Lains JA, Lopes P, Martins HCB, Mata JC, Mateus A, Moita P, Neiva AMN, Ribeiro MA, Santos JF, Solá AR (2019) Variscan magmatism. In: Quesada C, Oliveira JT (eds) The geology of iberia: A geodynamic approach, vol 2. The variscan cycle regional geology reviews. Springer, pp 497–526

    Chapter  Google Scholar 

  • Roda-Robles E, Villaseca C, Pesquera A, Gil-Crespo PP, Vieira R, Lima A, Garate-Olave I (2018) Petrogenetic relationships between Variscan granitoids and Li-(FP)-rich aplite-pegmatites in the Central Iberian Zone: geological and geochemical constraints and implications for other regions from the European Variscides. Ore Geol Rev 95:408–430. https://doi.org/10.1016/j.oregeorev.2018.02.027

    Article  Google Scholar 

  • Sahoo SK, Katlamudi M, Shaji JP, Krishna KM, Lakshmi GU (2018) Influence of meteorological parameters on the soil radon (Rn 222) emanation in Kutch, Gujarat India. Environ Monit Assess 190(3):1–20

    Article  Google Scholar 

  • Sakoda A, Ishimori Y, Yamaoka K (2011) A comprehensive review of radon emanation measurements for mineral, rock, soil, mill tailing and fly ash. Appl Radiat Isot 69:1422–1435. https://doi.org/10.1016/j.apradiso.2011.06.009

    Article  Google Scholar 

  • Salminen R, Batista MJ, Bidovec M, Demetriades A, De Vivo B, de Vos W, Duris M, Gilucis A, Gregorauskiene V, Halamic J, Heitzmann P, Lima A, Jordan G, Klaver G, Klein P, Lis J, Locutura J, Marsina K, Mazreku A, Tarvainen T (2005) Geochemical Atlas of Europe. In: Salminen R (ed) Background information, methodology and maps, geological survey of Finland. Springer

    Google Scholar 

  • Salters VJM (2018a) Thorium. In: White WM (Eds) Encyclopedia of geochemistry. A comprehensive reference source on the chemistry of the earth. Encyclopedia of earth sciences series, 1439–1441.

  • Salters VJM (2018b) Uranium. In: White WM (Eds) Encyclopedia of geochemistry. A comprehensive reference source on the chemistry of the earth. Encyclopedia of earth sciences series. 1464–1468.

  • Schön J (2011) Physical properties of rocks: a workbook. Elsevier, p 481

    Google Scholar 

  • Schubert M, Musolff A, Weiss H (2018) Influences of meteorological parameters on indoor radon concentrations (222Rn) excluding the effects of forced ventilation and radon exhalation from soil and building materials. J Environ Radioact 192:81–85

    Article  Google Scholar 

  • Sêco SLR, Domingos F, Pereira AJSC, Duarte LV (2020) Estimation of the radon production potential in sedimentary rocks: a case study in the lower and middle jurassic of the Lusitanian Basin (Portugal). J Environ Radioact 220–221:106272. https://doi.org/10.1016/j.jenvrad.2020.106272

    Article  Google Scholar 

  • Sêco SLR, Pereira AJSC, Duarte LV, Domingos F (2021) Sources of uncertainty in field gamma-ray spectrometry: Implications for exploration in the lower-middle jurassic sedimentary succession of the lusitanian Basin (Portugal). J Geochem Explor. https://doi.org/10.1016/j.gexplo.2021.106799

    Article  Google Scholar 

  • Shimo M, Ishimori Y, Hosoda M, Tokonami S (2010) Thoron exhalation rates in areas of Japan. Radiat Prot Dosimetry 141(4):473–476. https://doi.org/10.1093/rpd/ncq247

    Article  Google Scholar 

  • Sousa LMO, Oliveira AS, Alves IMC (2016) Influence of fracture system on the exploitation of building stones: the case of the Mondim de Basto granite (north Portugal). Environ Earth Sci 75(1):1–16

    Article  Google Scholar 

  • Steinhäusler F (1996) Environmental 220Rn: a review. Environ Internat 22(1):S1111–S1123. https://doi.org/10.1016/S0160-4120(96)00227-9

    Article  Google Scholar 

  • Tanner AB (1980) Radon migration in the ground: a supplementary review. In: Gesell TF, Lowder WM (Eds) Natural radiation environment III: US Department of Energy Report CONF-780422, 1, 5–56.

  • Tokonami S (2010) Why is 220Rn (thoron) measurement important? Radiat Prot Dosim 141(4):335–339. https://doi.org/10.1093/rpd/ncq246

    Article  Google Scholar 

  • UNSCEAR (2010) Source and effects of ionizing radiation. UNSCEAR 2008, report to the general assembly with scientific annexes, I. 463 p.

  • User Manual 12, 2016 (2016). AlphaGuard Professional Radon Monitor, Type DF2000. Saphymo. 71 p.

  • Villaros A, Buick IS, Stevens G (2012) Isotopic variations in S-type granites: an inheritance from a heterogeneous source? Contrib Miner Petrol 163(2):243–257. https://doi.org/10.1007/s00410-011-0673-9

    Article  Google Scholar 

  • Wedepohl KH (1974) Handbook of Geochemistry. Spring-Verlag

    Book  Google Scholar 

  • Yarmoshenko I, Vasilyev A, Malinovsky G, Bossew P, Žunić ZS, Onischenko A, Zhukovsky M (2016) Variance of indoor radon concentration: Major influencing factors. Sci Total Environ 541:155–160

    Article  Google Scholar 

  • Zhang W, Zhang Y, Sun Q (2019) Analyses of influencing factors for radon emanation and exhalation in soil. Water Air Soil Pollut 230(1):16

    Article  Google Scholar 

  • Zhuo W, Tokonami S, Yonehara H, Yamada Y (2002) A simple passive monitor for integrating measurements of indoor thoron concentrations. Rev Sci Instrum 73(8):2877–2881

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial and technical support provided by the Laboratory of Natural Radioactivity of the Department of Earth Sciences (University of Coimbra, Portugal) and IATV—Instituto do Ambiente Tecnologia e Vida (Portugal).

Funding

This study was funded by the Laboratory of Natural Radioactivity of University of Coimbra (Portugal) and IATV—Instituto do Ambiente Tecnologia e Vida (Portugal).

Author information

Authors and Affiliations

Authors

Contributions

FP Domingos was responsible for analysis and interpretation of data, and drafting the article. SLRS was responsible for acquisition of data and drafting the article. AJSC Pereira was responsible for conception and design, and for critically revising the article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Filipa P. Domingos.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Human and animal rights

Not applicabble.

Consent for publication

The authors are responsible for the correctness of the statements provided in the manuscript. The publication has been approved by all co-authors. All authors agree with the sequence of authors listed and the designated corresponding author.

Consent to participate

Not applicabble.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a Topical Collection in Environmental Earth Sciences on “Building Stones and Geomaterials through History and Environments—from Quarry to Heritage. Insights of the Conditioning Factors”, guest edited by Siegfried Siegesmund, Luís Manuel Oliveira Sousa, and Rubén Alfonso López-Doncel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domingos, F.P., Sêco, S.L.R. & Pereira, A.J.S.C. Thoron and radon exhalation and emanation from granitic rocks outcropping in the Central Iberian Zone (Portugal). Environ Earth Sci 80, 753 (2021). https://doi.org/10.1007/s12665-021-10008-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-021-10008-x

Keywords

Navigation