Skip to main content

Radon in Air and Water

  • Chapter
  • First Online:
Essentials of Medical Geology

Abstract

Radon is a natural radioactive gas that you cannot see, smell, or taste and that can only be detected with special equipment. It is produced by the radioactive decay of radium, which in turn is derived from the radioactive decay of uranium. Uranium is found in small quantities in all soils and rocks, although the amount varies from place to place. Radon decays to form radioactive particles that can enter the body by inhalation. Inhalation of the short-lived decay products of radon has been linked to an increase in the risk of developing cancers of the respiratory tract, especially of the lungs. Breathing radon in the indoor air of homes contributes to about 15,000 lung cancer deaths each year in the United States and 1,100 in the UK (HPA 2009). Only smoking causes more lung cancer deaths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ã…kerblom G (1987) Investigations and mapping of radon risk areas. In: Proceedings of international symposium on geological mapping, Trondheim, 1986: in the service of environmental planning. Norges Geologiske Undersoekelse, Oslo, pp 96–106

    Google Scholar 

  • Ã…kerblom G (1999) Radon legislation and national guidelines 99:18. Swedish Radiation Protection Institute

    Google Scholar 

  • Ã…kerblom G, Falk R, Lindgren J, Mjönes L, Östergren I, Söderman A-L, Nyblom L, Möre H, Hagberg N, Andersson P, Ek B-M (2005a) Natural radioactivity in Sweden, exposure to external radiation, radiological protection in transition. In: Proceedings of the XIV regular meeting of the Nordic Society for Radiation Protection. NSFS Rättvik, Sweden, pp 207–210

    Google Scholar 

  • Ã…kerblom G, Falk R, Lindgren J, Mjönes L, Östergren I, Söderman A-L, Nyblom L, Möre H, Hagberg N, Andersson P, Ek B-M (2005b) Natural radioactivity in Sweden, exposure to internal radiation, radiological protection in transition. In: Proceedings of the XIV regular meeting of the Nordic Society for Radiation Protection. NSFS Rättvik, Sweden, pp 211–214

    Google Scholar 

  • Akerblom G, Lindgren J (1997) Mapping of groundwater radon potential, Uranium exploration data and techniques applied to the preparation of radioelement maps; proceedings. International Atomic Energy Agency, Vienna, pp 237–255

    Google Scholar 

  • Ã…kerblom G, Mellander H (1997) Geology and radon. In: Durrani SA, Ilic´ R (eds) Radon measurements by etched track detectors. World Scientific, River Edge, pp 21–49

    Google Scholar 

  • Appleton JD, (2004) Influence of faults on geological radon potential in England and Wales. In: Barnet I, Neznal M, Pacherová P (eds) Radon investigations in the Czech Republic X and the seventh international workshop on the geological aspects of radon risk mapping. Czech Geological Survey & Radon Corporation, Prague

    Google Scholar 

  • Appleton JD, Ball TK (2001) Geological radon potential mapping. In: Bobrowsky PT (ed) Geoenvironmental mapping: methods, theory and practice. Balkema, Rotterdam, pp 577–613

    Google Scholar 

  • Appleton JD, Miles JCH (2002) Mapping radon-prone areas using integrated geological and grid square approaches. In: Barnet I, Neznal M, MikÅ¡ová J (eds) Radon investigations in the Czech Republic IX and the sixth international workshop on the geological aspects of radon risk mapping. Czech Geological Survey, Prague, pp 34–43

    Google Scholar 

  • Appleton JD, Miles JCH (2010) A statistical evaluation of the geogenic controls on indoor radon concentrations and radon risk. J Environ Radioact 101:799–803

    Google Scholar 

  • Appleton JD, Miles JCH, Talbot DK (2000a) Dealing with radon emissions in respect of new development: evaluation of mapping and site investigation methods for targeting areas where new development may require radon protective measures. British geological survey research report, RR/00/12

    Google Scholar 

  • Appleton JD, Miles JCH, Scivyer CR, Smith PH (2000b) Dealing with radon emissions in respect of new development: summary report and recommended framework for planning guidance. British geological survey research report, RR/00/07

    Google Scholar 

  • Appleton JD, Miles JCH, Green BMR, Larmour R (2008) Pilot study of the application of tellus airborne radiometric and soil geochemical data for radon mapping. J Environ Radioact 99:1687–1697

    Google Scholar 

  • Appleton JD, Cave MR, Miles JCH, Sumerling TJ (2011a) Soil radium, soil gas radon and indoor radon empirical relationships to assist in post-closure impact assessment related to near-surface radioactive waste disposal. J Environ Radioact 102:221–234

    Google Scholar 

  • Appleton JD, Doyle E, Fenton D, Organo C (2011b) Radon potential mapping of the Tralee-Castleisland and Cavan areas (Ireland) based on airborne gamma-ray spectrometry and geology. J Radiol Prot 31:221–235

    Google Scholar 

  • Appleton JD, Miles JCH, Young M (2011c) Comparison of Northern Ireland radon maps based on indoor radon measurements and geology with maps derived by predictive modelling of airborne radiometric and ground permeability data. Sci Total Environ 409:1572–1583

    Google Scholar 

  • Avino R, Capaldi G, Pece R (1999) Radon in active volcanic areas of Southern Italy. Nuovo Cimento Della Societa Italiana Di Fisica C-Geophys Space Phys 22:379–385

    Google Scholar 

  • Ball TK, Miles JCH (1993) Geological and geochemical factors affecting the radon concentration in homes in Cornwall and Devon, UK. Environ Geochem Health 15(1):27–36

    Google Scholar 

  • Ball TK, Cameron DG, Colman TB, Roberts PD (1991) Behavior of radon in the geological environment – a review. Q J Eng Geol 24(2):169–182

    Google Scholar 

  • Ball TK, Cameron DG, Colman TB (1992) Aspects of radon potential mapping in Britain. Radiat Prot Dosimetry 45:211–214

    Google Scholar 

  • Barnet I (1994) Radon risk classification for building purposes in the Czech Republic. In: Barnet I, Neznal M (eds) Radon investigations in Czech Republic V. Czech Geological Survey, Prague, pp 18–24

    Google Scholar 

  • Barnet I, Miksová J, Fojtíková I (2002) The GIS analysis of indoor radon and soil gas in major rock types of the Czech Republic. In: Barnet I, Neznal M, MikÅ¡ová J (eds) Radon investigations in the Czech Republic IX and the sixth international workshop on the geological aspects of radon risk mapping. Czech Geological Survey, Prague, pp 5–11

    Google Scholar 

  • Barnet I, Pacherova P, Neznal M, Neznal M (2008) Radon in geological environment – Czech experience, special papers. Czech Geological Survey, Prague, p 70

    Google Scholar 

  • Barnet I, Pacherová P, Preusse W, Stec B (2010) Cross-border radon index map 1: 100 000 Lausitz – Jizera – Karkonosze – Region (northern part of the Bohemian Massif). J Environ Radioact 101:809–812

    Google Scholar 

  • Bossew P (2003) The radon emanation power of building materials, soils and rocks. Appl Radiat Isot 59:389–392

    Google Scholar 

  • Bossew P (2009) Uncertainty of block estimates introduced by mis-allocation of point samples: on the example of spatial indoor radon data. J Environ Radioact 100:274–279

    Google Scholar 

  • Bossew P (2010) Radon: exploring the log-normal mystery. J Environ Radioact 101:826–834

    Google Scholar 

  • Bossew P, Lettner H (2007) Investigations on indoor radon in Austria, part 1: seasonality of indoor radon concentration. J Environ Radioact 98:329–345

    Google Scholar 

  • Bossew P, Dubois G, Tollefsen T (2008) Investigations on indoor radon in Austria, part 2: geological classes as categorical external drift for spatial modelling of the radon potential. J Environ Radioact 99:81–97

    Google Scholar 

  • BRE (1999) Radon: guidance on protective measures for new dwellings. Building research establishment report, BR 211

    Google Scholar 

  • Burke O, Murphy P (2011) Regional variation of seasonal correction factors for indoor radon levels. Radiat Meas 46:1168–1172

    Google Scholar 

  • CEC (Council of the European Community) (1998) Council directive 98/83/EC on the quality of water intended for human consumption. Off J Europ Comm, L 330/32 of 5.12.98

    Google Scholar 

  • Chau ND, Chrusciel E, Prokolski L (2005) Factors controlling measurements of radon mass exhalation rate. J Environ Radioact 82:363–369

    Google Scholar 

  • Chen J (2009) A preliminary design of a radon potential map for Canada: a multi-tier approach. Environ Earth Sci 59:775–782

    Google Scholar 

  • Chen D, You X, Hu R (2005) Indoor radon survey in indoor environments in Zhuhai city, China. Radiat Meas 39:205–207

    Google Scholar 

  • Chen J, Ford K, Whyte J, Bush K, Moir D, Cornett J (2011) Achievements and current activities of the Canadian radon program. Radiat Prot Dosimetry 146:14–18

    Google Scholar 

  • Cheng JP, Guo QJ, Ren TS (2002) Radon levels in China. J Nucl Sci Technol 39:695–699

    Google Scholar 

  • Ciotoli G, Guerra M, Lombardi S, Vittori E (1998) Soil gas survey for tracing seismogenic faults: a case study in the Fucino basin, central Italy. J Geophys Res-Solid Earth 103:23781–23794

    Google Scholar 

  • Clavensjö B, Ã…kerblom G (1994) The radon book. The Swedish Council for Building Research, Stockholm

    Google Scholar 

  • Cliff KD, Miles JCH (eds) (1997) Radon research in the European Union, EUR 17628. National Radiological Protection Board, Chilton, UK

    Google Scholar 

  • Cohen BL (1997) Problems in the radon vs. Lung cancer test of the linear no-threshold theory and a procedure for resolving them. Health Phys 72:623–628

    Google Scholar 

  • Cross FT (1992) A review of experimental animal radon health insights and implications. In: Dewey DC et al (eds) Radiation research, a twentieth century perspective. Academic, New York, pp 333–339

    Google Scholar 

  • Darby SC et al (1995) Radon and cancers other than lung cancer in underground miners – a collaborative analysis of 11 studies. J Natl Cancer Inst 87(5):378–384

    Google Scholar 

  • Darby SC, Whitely E, Silcocks P et al (1998) Risk of cancer associated with residential radon exposure in South-West England: a case–control study. Br J Cancer 78:394–408

    Google Scholar 

  • Darby S, Hill D, Auvinen A, Barrios-Dios JM, Baysson H, Bochicchio F, Deo H, Falk R, Forastiere F, Hakama M, Heid I, Kreienbrock L, Kreuzer M, Lagarde F, Makelainen I, Muirhead C, Oberaigner W, Pershagen G, Ruano-Ravina A, Ruosteenoja E, Rosario AS, Tirmarche M, Tomasek L, Whitley E, Wichmann HE, Doll R (2005) Radon in homes and risk of lung cancer: collaborative analysis of individual data from 13 European case–control studies. Br Med J 330:223–226

    Google Scholar 

  • Denman AR, Crockett RGM, Groves-Kirkby CJ, Phillips PS, Gillmore GK, Woolridge AC (2007) The value of seasonal correction factors in assessing the health risk from domestic radon—a case study in Northamptonshire, UK. Environ Int 33:34–44

    Google Scholar 

  • Dubois G (2005) An overview of radon surveys in Europe. Office for Official Publications of the European Community, Luxembourg, p 168

    Google Scholar 

  • Dubois G, Bossew P, Friedmann H (2007) A geostatistical autopsy of the Austrian indoor radon survey (1992–2002). Sci Total Environ 377:378–395

    Google Scholar 

  • Dubois G, Bossew P, Tollefsen T, De Cort M (2010) First steps towards a European atlas of natural radiation: status of the European indoor radon map. J Environ Radioact 101:786–798

    Google Scholar 

  • Duport P (2002) Is the radon risk overestimated? Neglected doses in the estimation of the risk of lung cancer in uranium underground miners. Radiat Prot Dosimetry 98(3):329–338

    Google Scholar 

  • Duval JS, Otton JK (1990) Radium distribution and indoor radon in the Pacific Northwest. Geophys Res Lett 17(6):801–804

    Google Scholar 

  • Fennell SG, Mackin GM, Madden JS, McGarry AT, Duffy JT, O’Colmáin M, Colgan PA, Pollard D (2002) Radon in dwellings the Irish national radon survey. Survey Radiological Protection Institute of Ireland, Dublin

    Google Scholar 

  • Friedmann H, Gröller J (2010) An approach to improve the Austrian radon potential Map by Bayesian statistics. J Environ Radioact 101:804–808

    Google Scholar 

  • Galán López M, Martín Sánchez A (2008) Present status of 222Rn in groundwater in Extremadura. J Environ Radioact 99:1539–1543

    Google Scholar 

  • Ghosh D, Deb A, Sengupta R (2009) Anomalous radon emission as precursor of earthquake. J Appl Geophys 69:67–81

    Google Scholar 

  • Gillmore GK, Sperrin M, Phillips P, Denman A (2000) Radon hazards, geology, and exposure of cave users: a case study and some theoretical perspectives. Ecotoxicol Environ Saf 46:279–288

    Google Scholar 

  • Gillmore GK, Phillips P, Denman A, Sperrin M, Pearce G (2001) Radon levels in abandoned metalliferous mines, Devon, southwest England. Ecotoxicol Environ Saf 49:281–292

    Google Scholar 

  • Gillmore GK, Phillips PS, Denman AR, Gilbertson DD (2002) Radon in the Creswell crags Permian limestone caves. J Environ Radioact 62:165–179

    Google Scholar 

  • Gilmore GK, Phillips P, Denman A, Sperrin M, Pearce G (2001) Radon levels in abandoned metalliferous mines, Devon, Southwest England. Ecotoxicol Environ Saf 49(3):281–292

    Google Scholar 

  • Grasty RL (1997) Radon emanation and soil moisture effects on airborne Gamma-Ray measurements. Geophysics 62(5):1379–1385

    Google Scholar 

  • Gray A, Read S, McGale P, Darby S (2009) Lung cancer deaths from indoor radon and the cost effectiveness and potential of policies to reduce them. BMJ 338:a3110

    Google Scholar 

  • Greeman DJ, Rose AW (1996) Factors controlling the emanation of radon and thoron in soils of the eastern U. S. A. Chem Geol 129:1–14

    Google Scholar 

  • Greeman DJ, Rose AW, Jester WA (1990) Form and behavior of radium, uranium, and thorium in central Pennsylvania soils derived from dolomite. Geophys Res Lett 17(6):833–836

    Google Scholar 

  • Green BMR, Lomas PR, O’Riordan MC (1992) Radon in dwellings in England, NRPB-R254. National Radiological Protection Board, Chilton

    Google Scholar 

  • Groves-Kirkby CJ, Denman AR, Phillips PS, Tornberg R, Woolridge AC, Crockett RGM (2008) Domestic radon remediation of U.K. dwellings by sub-slab depressurisation: evidence for a baseline contribution from constructional materials. Environ Int 34:428–436

    Google Scholar 

  • Gunby JA, Darby SC, Miles JCH, Green BMR, Cox DR (1993) Factors affecting indoor radon concentrations in the United Kingdom. Health Phys 64:2–12

    Google Scholar 

  • Gundersen LCS, Schumann ER (1996) Mapping the radon potential of the United States: examples from the Appalachians. Environ Int 22(suppl 1):S829–S844

    Google Scholar 

  • Gundersen LCS, Schumann ER, Otton JK, Dubief RF, Owen DE, Dickenson KE (1992) Geology of radon in the United States. In: Gates AE, Gundersen LCS (eds) Geologic controls on radon, Special paper 271. Geological Society America, Boulder, pp 1–16

    Google Scholar 

  • Hishinuma T, Nishikawa T, Shimoyama T, Miyajima M, Tamagawa Y, Okabe S (1999) Emission of radon and thoron due to the fracture of rock. Nuovo Cimento Della Societa Italiana Di Fisica C-Geophys Space Phys 22:523–527

    Google Scholar 

  • HPA (2009) Radon and public health: report prepared by the subgroup on radon epidemiology of the independent advisory group on ionising radiation. Documents of the Health Protection Agency. Health Protection Agency, UK

    Google Scholar 

  • Hunter N, Muirhead CR, Miles JCH, Appleton JD (2009) Uncertainties in radon related to house-specific factors and proximity to geological boundaries in England. Radiat Prot Dosim 136:17–22

    Google Scholar 

  • Hunter N, Muirhead CR, Miles JCH (2011) Two error components model for measurement error: application to radon in homes. J Environ Radioact 102:799–805

    Google Scholar 

  • ICRP (2007) The 2007 recommendations of the international commission on radiological protection, Annals ICRP. ICRP, Oxford

    Google Scholar 

  • ICRP (2009) International commission on radiological protection statement on radon. ICRP 37:2–4

    Google Scholar 

  • ICRP (International Committee on Radiological Protection) (1993) Protection against radon-222 at home and at work. Ann ICRP 23(2):1–65, ICRP Publication 65

    Google Scholar 

  • Ielsch G et al (2001a) Radon (Rn-222) level variations on a regional scale: influence of the basement trace element (U, Th) geochemistry on radon exhalation rates. J Environ Radioact 53(1):75–90

    Google Scholar 

  • Ielsch G, Thieblemont D, Labed V, Richon P, Tymen G, Ferry C, Robe MC, Baubron JC, Bechennec F (2001b) Radon (Rn-222) level variations on a regional scale: influence of the basement trace element (U, Th) geochemistry on radon exhalation rates. J Environ Radioact 53:75–90

    Google Scholar 

  • Ielsch G, Cushing ME, Combes P, Cuney M (2010) Mapping of the geogenic radon potential in France to improve radon risk management: methodology and first application to region Bourgogne. J Environ Radioact 101:813–820

    Google Scholar 

  • Je HK, Kang CG, Chon HT (1999) A preliminary study on soil-gas radon geochemistry according to different bedrock geology in Korea. Environ Geochem Health 21(2):117–131

    Google Scholar 

  • Jin Y, Wang Z, Lida T, Ikebe Y, Abe S, Chen H, Wu L, Zeng Q, Du K, Li S (1996) A new subnationwide survey of outdoor and indoor Rn-222 concentrations in China. Environ Int 22:S657–S663

    Google Scholar 

  • Kemski J, Klingel R (2008) Prediction of indoor radon in Germany on a regional scale. Kerntechnik 73:131–137

    Google Scholar 

  • Kemski J, Siehl A, Stegemann R, Valdivia-Manchego M (2001) Mapping the geogenic radon potential in Germany. Sci Total Environ 272(1–3):217–230

    Google Scholar 

  • Kemski J, Klingel R, Siehl A, Valdivia-Manchego M (2009) From radon hazard to risk prediction-based on geological maps, soil gas and indoor measurements in Germany. Environ Geol 56:1269–1279

    Google Scholar 

  • Krewski D, Lubin JH, Zielinski JM, Alavanja M, Catalan VS, Field RW, Klotz JB, Letourneau EG, Lynch CF, Lyon JI, Sandler DP, Schoenberg JB, Steck DJ, Stolwijk JA, Weinberg C, Wilcox HB (2005) Residential radon and risk of lung cancer – a combined analysis of 7 north American case–control studies. Epidemiology 16:137–145

    Google Scholar 

  • Krewski D, Lubin JH, Zielinski JM, Alavanja M, Catalan VS, Field RW, Klotz JB, Letourneau EG, Lynch CF, Lyon JL, Sandler DP, Schoenberg JB, Steck DJ, Stolwijk JA, Weinberg C, Wilcox HB (2006) A combined analysis of North American case–control studies of residential radon and lung cancer. J Toxicol Environ Health-Part a-Curr Issue 69:533–597

    Google Scholar 

  • Laurier D, Valenty M, Tirmarche M (2001) Radon exposure and the risk of leukemia: a review of epidemiological studies. Health Phys 81(3):272–288

    Google Scholar 

  • Lawrence CE, Akber RA, Bollhöfer A, Martin P (2009) Radon-222 exhalation from open ground on and around a uranium mine in the wet-dry tropics. J Environ Radioact 100:1–8

    Google Scholar 

  • Li XY, Zheng B, Wang Y, Wang X (2006) A survey of radon level in underground buildings in China. Environ Int 32:600–605

    Google Scholar 

  • Li X, Song B, Zheng B, Wang Y, Wang X (2010) The distribution of radon in tunnels with different geological characteristics in China. J Environ Radioact 101:345–348

    Google Scholar 

  • Lomas PR, Green BMR, Miles JCH, Kendall GM (1996) Radon Atlas of England, NRPB-290. National Radiological Protection Board, Chilton

    Google Scholar 

  • Lubin JH (1998) On the discrepancy between epidemiologic studies in individuals of lung cancer and residential radon and Cohen’s ecologic regression. Health Phys 75(1):4–10

    Google Scholar 

  • Lubin JH, Boice JD (1997) Lung cancer risk from residential radon: meta-analysis of eight epidemiologic studies. J Natl Cancer Inst 89(1):49–57

    Google Scholar 

  • Lubin JH et al (1994) Radon exposure in residences and lung-cancer among women – combined analysis of 3 studies. Cancer Causes Control 5(2):114–128

    Google Scholar 

  • Man CK, Yeung HS (1998) Radioactivity contents in building materials used in Hong Kong. J Radioanal Nucl Chem 232(1–2):219–222

    Google Scholar 

  • Miksová J, Barnet I (2002) Geological support to the national radon programme (Czech Republic). Bull Czech Geol Surv 77(1):13–22

    Google Scholar 

  • Miles JCH (1998) Mapping radon-prone areas by log-normal modelling of house radon data. Health Phys 74:370–378

    Google Scholar 

  • Miles JCH (2001) Temporal variation of radon levels in houses and implications for radon measurement strategies. Radiat Prot Dosimetry 93:369–376

    Google Scholar 

  • Miles JCH, Appleton JD (2000) Identification of localised areas of England where radon concentrations are most likely to have 5% probability of being above the Action Level. Department of the Environment, Transport and the Regions report, DETR/RAS/00.001. DETR, London

    Google Scholar 

  • Miles JCH, Appleton JD (2005) Mapping variation in radon potential both between and within geological units. J Radiol Prot 25:257–276

    Google Scholar 

  • Miles JCH, Ball TK (1996) Mapping radon-prone areas using house radon data and geological boundaries. Environ Int 22(suppl 1):779–782

    Google Scholar 

  • Miles JCH, Appleton JD, Rees DM, Green BMR, Adlam KAM, Myers AH (2007) Indicative atlas of radon in England and Wales. HPA, Chilton

    Google Scholar 

  • Moreno V, Baixeras C, Font L, Bach J (2008) Indoor radon levels and their dynamics in relation with the geological characteristics of La Garrotxa, Spain. Radiat Meas 43:1532–1540

    Google Scholar 

  • Mudd GM (2008) Radon releases from Australian uranium mining and milling projects: assessing the UNSCEAR approach. J Environ Radioact 99:288–315

    Google Scholar 

  • Mui KW, Wong LT, Hui PS (2008) An approach to assessing the probability of unsatisfactory radon in air-conditioned offices of Hong Kong. J Environ Radioact 99:248–259

    Google Scholar 

  • Murphy P, Organo C (2008) A comparative study of lognormal, gamma and beta modelling in radon mapping with recommendations regarding bias, sample sizes and the treatment of outliers. J Radiol Prot 28:293–302

    Google Scholar 

  • NAS (1998) Health effects of exposure to radon (BEIR VI). National Academy of Sciences, Washington, DC

    Google Scholar 

  • Nazaroff WW (1988) Measurement techniques. In: Radon and its decay products in indoor air. Wiley, New York, pp 491–504

    Google Scholar 

  • Neri M, Giammanco S, Ferrera E, Patanè G, Zanon V (2011) Spatial distribution of soil radon as a tool to recognize active faulting on an active volcano: the example of Mt. Etna (Italy). J Environ Radioact 102:863–870

    Google Scholar 

  • NRPB (1989) Living with radiation. National Radiological Protection Board, Chilton

    Google Scholar 

  • NRPB (2000) Health risks from radon. National Radiological Protection Board, Chilton

    Google Scholar 

  • Organo C, Murphy P (2007) The Castleisland radon survey – follow-up to the discovery of a house with extremely high radon concentrations in county Kerry (SW Ireland). J Radiol Prot 27:275–285

    Google Scholar 

  • Papastefanou C (2007) Measuring radon in soil gas and groundwaters: a review. Ann Geophys 50:569–578

    Google Scholar 

  • Papastefanou C (2010) Variation of radon flux along active fault zones in association with earthquake occurrence. Radiat Meas 45:943–951

    Google Scholar 

  • Pereira AJSC, Godinho MM, Neves LJPF (2010) On the influence of faulting on small-scale soil-gas radon variability: a case study in the Iberian uranium province. J Environ Radioact 101:875–882

    Google Scholar 

  • Petersell V, Ã…kerblom G, Ek B-M, Enel M, Mõttus V, Täht K (2005) Radon risk Map of Estonia: explanatory text to the radon risk map set of Estonia at scale of 1:500 000. Swedish Radiation Protection Authority, Tallinn/Stockholm, p 76

    Google Scholar 

  • Poffijn A, Goes E, Michaela I (2002) Investigation of the radon potential of an Alum deposit. In: Barnet I, Neznal M, Miksova J (eds) Radon investigations in the Czech Republic IX and the sixth international workshop on the geological aspects of radon risk mapping, Czech geological survey, Prague

    Google Scholar 

  • Przylibski TA, Mamont-Ciesla K, Kusyk M, Dorda J, Kozlowska B (2004) Radon concentrations in groundwaters of the Polish part of the Sudety Mountains (SW Poland). J Environ Radioact 75:193–209

    Google Scholar 

  • NRPA (Nordic Radiation Protection Authorities) (2000) Naturally occurring radioactivity in the Nordic countries – recommendations. The Radiation Protection Authorities in Denmark, Finland, Iceland, Norway, and Sweden

    Google Scholar 

  • Ramachandan TV, Sathish LA (2011) Nationwide indoor 222Rn and 220Rn map for India: a review. J Environ Radioact 102:975–986

    Google Scholar 

  • Raspa G, Salvi F, Torri G (2010) Probability mapping of indoor radon-prone areas using disjunctive kriging. Radiat Prot Dosimetry 138:3–19

    Google Scholar 

  • Rees DM, Bradley EJ, Green BMR (2011) Radon in homes in England and Wales: 2010 data review, HPA-CRCE-015. HPA, Chilton

    Google Scholar 

  • Rose AW, Hutter AR, Washington JW (1990) Sampling variability of radon in soil gases. J Geochem Explor 38:173–191

    Google Scholar 

  • Sakoda A, Ishimori Y, Hanamoto K, Kataoka T, Kawabe A, Yamaoka K (2010) Experimental and modeling studies of grain size and moisture content effects on radon emanation. Radiat Meas 45:204–210

    Google Scholar 

  • Scheib C, Appleton JD, Jones DJ, Hodgkinson E (2006) Airborne uranium data in support of radon potential mapping in Derbyshire, Central England. In: Barnet I, Neznal M, Pacherová P (eds) Radon investigations in the Czech Republic XI and the eighth international workshop on the geological aspects of radon risk mapping. Czech geological survey, Prague, pp 210–219

    Google Scholar 

  • Scheib C, Appleton JD, Miles JCH, Green BMR, Barlow TS, Jones DG (2009) Geological controls on radon potential in Scotland. Scott J Geol 45:147–160

    Google Scholar 

  • Singh S, Kumar A, Singh B (2002) Radon level in dwellings and its correlation with uranium and radium content in some areas of Himachal Pradesh, India. Environ Int 28(1–2):97–101

    Google Scholar 

  • Skeppstrom K, Olofsson B (2006) A prediction method for radon in groundwater using GIS and multivariate statistics. Sci Total Environ 367:666–680

    Google Scholar 

  • Smethurst MA, Strand T, Sundal AV, Rudjord AL (2008) Large-scale radon hazard evaluation in the Oslofjord region of Norway utilizing indoor radon concentrations, airborne gamma ray spectrometry and geological mapping. Sci Total Environ 407:379–393

    Google Scholar 

  • Smith BJ, Field RW, Lynch CF (1998) Residential Rn-222 exposure and lung cancer: testing the linear no-threshold theory with ecologic data. Health Phys 75(1):11–17

    Google Scholar 

  • Somlai J, Gorjanacz Z, Varhegyi A, Kovacs T (2006) Radon concentration in houses over a closed Hungarian uranium mine. Sci Total Environ 367:653–665

    Google Scholar 

  • Song G, Wang X, Chen D, Chen Y (2011) Contribution of 222Rn-bearing water to indoor radon and indoor air quality assessment in hot spring hotels of Guangdong, China. J Environ Radioact 102:400–406

    Google Scholar 

  • Song G, Chen D, Tang Z, Zhang Z, Xie W (2012) Natural radioactivity levels in topsoil from the Pearl River delta zone, Guangdong, China. J Environ Radioact 103:48–53

    Google Scholar 

  • Sundal AV, Henriksen H, Soldal O, Strand T (2004) The influence of geological factors on indoor radon concentrations in Norway. Sci Total Environ 328:41–53

    Google Scholar 

  • Swakon J, Kozak K, Paszkowski M, Gradzinski R, Loskiewicz J, Mazur J, Janik M, Bogacz xJ, Horwacik T, Olko P (2005) Radon concentration in soil gas around local disjunctive tectonic zones in the Krakow area. J Environ Radioact 78:137–149

    Google Scholar 

  • Talbot DK, Hodkin DL, Ball TK (1997) Radon investigations for tunnelling projects; a case study from St. Helier, Jersey. Q J Eng Geol 30(Part 2):115–122

    Google Scholar 

  • Tell I et al (1993) Indoor radon-daughter concentration and gamma-radiation in urban and rural homes on geologically varying ground. Sci Total Environ 128(2–3):191–203

    Google Scholar 

  • Tuia D, Kanevski M (2008) Indoor radon distribution in Switzerland: lognormality and extreme value theory. J Environ Radioact 99:649–657

    Google Scholar 

  • UNSCEAR (2009) United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). UNSCEAR 2006 report, annex E. Sources-to-effects assessment for radon in homes and workplaces. United Nations, New York

    Google Scholar 

  • UNSCEAR (United Nations Scientific Committee on the Effects of Atomic Radiation) (2000) Sources, effects, and risks of ionizing radiation. United Nations, New York

    Google Scholar 

  • USDOE (United States Department of Energy) (1988) Radiation inhalation studies of animals, DOE/ER-0396, Washington, DC

    Google Scholar 

  • Verdoya M, Chiozzi P, De Felice P, Pasquale V, Bochiolo M, Genovesi I (2009) Natural gamma-ray spectrometry as a tool for radiation dose and radon hazard modelling. Appl Radiat Isot 67:964–968

    Google Scholar 

  • Vesterbacka P, Makelainen I, Arvela H (2005) Natural radioactivity in drinking water in private wells in Finland. Radiat Prot Dosimetry 113:223–232

    Google Scholar 

  • Wang N, Xiao L, Li C, Huang Y, Pei S, Liu S, Xie F, Cheng Y (2005) Determination radioactivity level of 238U, 232Th and 40K in surface medium in Zhuhai city by in-situ gamma-ray spectrometry. J Nucl Sci Technol 42:888–896

    Google Scholar 

  • Wang N, Xiao L, Li C, Mei W, Hang Y, Liu D (2009) Level of radon exhalation rate from soil in some sedimentary and granite areas of China. J Nucl Sci Technol 46:303–309

    Google Scholar 

  • Wang N, Xiao L, Liu CK, Liu S, Huang Y, Liu DJ, Peng M (2011) Distribution and characteristics of radon gas in soil from a high-background-radiation city in China. J Nucl Sci Technol 48:751–758

    Google Scholar 

  • Washington JW, Rose AW (1992) Temporal variability of radon concentrations in the interstitial gas of soils in Pennsylvania. J Geophys Res 97(B6):9145–9159

    Google Scholar 

  • Watson SJ, Al J, Oatway WB, Hughes JS (2005) HPA-RPD-001 – ionising radiation exposure of the UK population: 2005 review. HPA, Chilton

    Google Scholar 

  • Wattananikorn K, Emharuthai S, Wanaphongse P (2008) A feasibility study of geogenic indoor radon mapping from airborne radiometric survey in northern Thailand. Radiat Meas 43:85–90

    Google Scholar 

  • WHO (1996) Guidelines for drinking-water quality, vol 2, 2nd edn. World Health Organization, Geneva

    Google Scholar 

  • WHO (2009) WHO handbook on indoor radon: a public health perspective. WHO Press, Geneva

    Google Scholar 

  • Wiegand J et al (2000) Radon and thoron in cave dwellings (Yan’an, China). Health Phys 78(4):438–444

    Google Scholar 

  • Yamada Y, Sun QF, Tokonami S, Akiba S, Zhou WH, Hou CS, Zhang SZ, Ishikawa T, Furukawa M, Fukutsu K, Yonehara H (2006) Radon-thoron discriminative measurements in Gansu province, China, and their implication for dose estimates. J Toxicol Environ Health-Part a-Curr Issue 69:723–734

    Google Scholar 

  • Zhu HC, Charlet JM, Poffijn A (2001) Radon risk mapping in southern Belgium: an application of geostatistical and GIS techniques. Sci Total Environ 272(1–3):203–210

    Google Scholar 

  • Zhuo WH, Iida T, Yang XT (2001) Occurrence of Rn-222, Ra-226, Ra-228 and U in groundwater in Fujian Province, China. J Environ Radioact 53:111–120

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Donald Appleton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Appleton, J.D. (2013). Radon in Air and Water. In: Selinus, O. (eds) Essentials of Medical Geology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4375-5_11

Download citation

Publish with us

Policies and ethics