Skip to main content

Advertisement

Log in

Radon and thoron concentrations in the southwest region of Angola: dose assessment and implications for risk mapping

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Indoor radon (222Rn) and thoron (220Rn) are the most important natural sources of ionizing radiation to the public. Radiological studies that assess simultaneously 222Rn and 220Rn, and their controlling factors are particularly scarce in African countries. Hence, we conducted a survey of indoor 222Rn and 220Rn in buildings located in the SW region of Angola. Bedrock samples were also collected, and a borehole was executed to assess 226Ra and 224Ra activity concentration, 222Rn and 220Rn exhalation and emanation potential in the surface and at depth. The aim of this study was to determine the factors (geological and anthropogenic) that may influence the annual inhalation dose (AID) received by the population. Overall, the sum of indoor radon and indoor thoron concentrations, labelled the total indoor radon concentration (TIRC), was higher than 300 Bq/m3 in only 5% of the buildings studied. The contribution of 220Rn to the TIRC averaged 35% but may reach 95%, demonstrating the relevance of discriminating radon and thoron in indoor radon surveys. Indoor 222Rn and 220Rn were not correlated, indicating both must be estimated to properly assess the AID. Indoor 220Rn concentrations were statistically different according to the building materials and type of usage. Higher 222Rn and 220Rn concentrations were observed in dwellings compared to workplaces. The median AID estimated for dwellings was 1.50 mSv/y compared to 0.26 mSv/y for workplaces, which are lower than the estimated average radiation exposure due to natural sources of 2.4 mSv/y. AID values higher than 1 mSv/y effective dose threshold established in the Council Directive 2013/59/EURATOM for the purpose of radiation protection in workplaces were observed in 12% of the workplaces studied suggesting the need for mitigation measures in those buildings. The analysis of bedrock samples revealed statistically significant correlations between 224 and 226Ra activity concentration, and 220Rn and 222Rn exhalation and emanation potential. The borehole samples indicated a strong influence of weathering processes in the distribution of radioisotopes. The highest 226Ra and 224Ra activity concentration, and 222Rn and 220Rn exhaled per unit mass, TIRC and AID were observed in association with A-type red granites and porphyries. We conclude that both geological and anthropic factors, such as the type of building usage and building materials, must be considered in dose assessment studies and for the development of risk maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Åkerblom, G., & Lindgren, J. (1997). Mapping of groundwater radon potential. International Atomic Energy Agency, Vienna, 13–17 May, Vienna, Austria, (No. IAEA-TECDOC--980) (pp. 237–255).

  • Appleton, J. D. (2013). Radon in air and water. In O. Selinus et al. (Eds.), Essentials of medical Geology: Revised Edition (pp. 239–277). Dordrecht: Springer.

  • Appleton, J. D., Cave, M. R., Miles, J. C. H., & Sumerling, T. J. (2011). Soil radium, soil gas radon and indoor radon empirical relationships to assist in post-closure impact assessment related to near-surface radioactive waste disposal. Journal of Environmental Radioactivity, 102(3), 221–234.

    Article  CAS  Google Scholar 

  • Bahu, Y., Kessongo, J., Peralta, L., & Soares, S. (2021). Exposure to radon in buildings in the municipality of Lubango, Angola, during winter months. Journal of Radioanalytical and Nuclear Chemistry, 327(2), 635–642.

    Article  CAS  Google Scholar 

  • Batumike, J. M., Griffin, W. L., O’Reilly, S. Y., Belousova, E. A., & Pawlitschek, M. (2009). Crustal evolution in the central Congo-Kasai Craton, Luebo, DR Congo: Insights from zircon U-Pb ages, Hf-isotope and trace-element data. Precambrian Research, 170(1–2), 107–115.

    Article  CAS  Google Scholar 

  • Boekhout, F., Gérard, M., Kanzari, A., Michel, A., Déjeant, A., Galoisy, L., Calas, G., & Descostes, M. (2015). Uranium migration and retention during weathering of a granitic waste rock pile. Applied Geochemistry, 58, 123–135.

    Article  CAS  Google Scholar 

  • Bossew, P., Stojanovska, Z., Zunic, Z. S., & Ristova, M. (2013). Prediction of indoor radon risk from radium concentration in soil: Republic of Macedonia case study. Romanian Journal of Physics, 58(Suppl), 30–43.

    Google Scholar 

  • Botha, R., Newman, R. T., Lindsay, R., & Maleka, P. P. (2017). Radon and thoron in-air occupational exposure study within selected wine cellars of the Western Cape (South Africa) and associated annual effective doses. Health Physics, 112(1), 98–107.

    Article  CAS  Google Scholar 

  • Boyle, R. W. (1982). Geochemical prospecting for thorium and uranium deposits (p. 498). Elsevier Scientific Publication Company.

    Google Scholar 

  • Burgess, N., Hales, J. D., Underwood, E., Dinerstein, E., Olson, D., Itoua, I., Schipper, J., Ricketts, T., & Newman, K. (2004). Terrestrial ecoregions of Africa and Madagascar: A conservation assessment (p. 499). Island Press.

    Google Scholar 

  • Burkin W., & Villert, J. (2017). Simultaneous Radon/Thoron discrimination using the AlphaGuard. Bertin Instruments, RADN-300-DE001, 22/02/2017.

  • Carvalho, H. (1984). Estratigrafia do Precâmbrico de Angola, 1ª aproximação. Centro de Geologia do Instituto de Investigação Científica Tropical. Garcia da Orta, Série Geologia, Lisboa, 7(1-2), 1–66.

  • Carvalho, H., Crasto, J., Silva, Z., & Vialette, Y. (1987). The Kibaran Cycle in Angola: A discussion. In: Bowden, P., Kinnaird, J., (Eds.) African Geology Reviews, Geological Journal, 22(1), 85–102.

  • Carvalho, H., & Alves, P. (1993). The Precambrian of SW Angola and NW Namíbia, general remarks, correlation analysis, economic geology, Comunicações do Instituto de Investigação Científica Tropical, Série de Ciências da Terra n. 4, Lisboa.

  • Carvalho, H. (1983). Notice explicative préliminaire sur la géologie de l’Angola. Garcia De Orta. Série De Geologia, 6(1–2), 15–30.

    Google Scholar 

  • Carvalho, H., Tassinari, C., Alves, P. H., Guimarães, F., & Simões, M. C. (2000). Geochronological review of the Precambrian in western Angola: Links with Brazil. Journal of African Earth Sciences, 31(2), 383–402.

    Article  Google Scholar 

  • Cinelli, G., De Cort, M., & Tollefsen, T. (2019). European atlas of natural radiation (p. 190). Publication Office of the European Union.

    Google Scholar 

  • Comtois, D. (2020). Summarytools: Tools to quickly and neatly summarize data. R package version 0.9.8. https://CRAN.R-project.org/package=summarytools

  • Correia, H. (1976). O Grupo da Chela e Formação da Leba como novas unidades litoestratigráficas resultantes da redefinição da Formação da Chela na região do Planalto da Humpata (Sudoeste de Angola). Bol. Soc. Geol. Port., 20, 65–130.

    Google Scholar 

  • Delor, C., Theveniaut, H., Cage, M., Pato, D., Lafon, J.-M., Bialkowski, A., Rooig, J.-Y., Neto, A., Cavongo, M., & Sergeev, S. (2008). New insights into the Precambrian geology of Angola: Basis for an updated lithochronological framework at 1: 2000000 scale. In: 22nd Colloquium of African Geology, Hammame, Tunisia (pp. 52–53).

  • Domingos, F., Cinelli, G., Neves, L., Pereira, A., Braga, R., Bossew, P., & Tollefsen, T. (2020). Validation of a database of mean uranium, thorium and potassium concentrations in rock samples of Portuguese geological units, generated of literature data. Journal of Environmental Radioactivity, 222, 106338.

    Article  CAS  Google Scholar 

  • Domingos, F., & Pereira, A. (2018). Implications of alteration processes on radon emanation, radon production rate and W-Sn exploration in the Panasqueira ore district. Science of the Total Environment, 622, 825–840.

    Article  Google Scholar 

  • Domingos, F. P., Sêco, S. L., & Pereira, A. J. (2021). Thoron and radon exhalation and emanation from granitic rocks outcropping in the Central Iberian Zone (Portugal). Environmental Earth Sciences, 80(22), 1–18.

    Article  Google Scholar 

  • Drüppel, K., Littmann, S., Romer, R. L., & Okrusch, M. (2007). Petrology and isotope geochemistry of the Mesoproterozoic anorthosite and related rocks of the Kunene Intrusive Complex, NW Namibia. Precambrian Research, 156(1–2), 1–31.

    Article  Google Scholar 

  • Farid, S. M. (1995). Passive track detectors for radon determination in the indoor environment. Applied Radiation and Isotopes, 46(2), 129–132.

    Article  CAS  Google Scholar 

  • Ferreira, N., Iglesias, M., Noronha, F., Pereira, E., Ribeiro, A., & Ribeiro, M. (1987). Granitoides da zona Centro-Ibérica e seu enquadramento geodinâmico. In: F., Bea, A., Gonzalo, Carnicero, J., Plaza, M., & Alonso, M. (Eds.), Geologia de los granitoides y rocas associados del Macizo Hesperico, libro homenage a L.C. Figueirola. Editorial Rueda, Madrid (pp. 37–51).

  • Ferreira da Silva, A. (2009). A geologia da República de Angola desde o Paleoarcaico ao Paleozóico Inferior. Boetim De Minas, 44, 99–162.

    Google Scholar 

  • Forkapic, S., Maletić, D., Vasin, J., Bikit, K., Mrdja, D., Bikit, I., Udovičić, V., & Banjanac, R. (2017). Correlation analysis of the natural radionuclides in soil and indoor radon in Vojvodina, Province of Serbia. Journal of Environmental Radioactivity, 166, 403–411.

    Article  CAS  Google Scholar 

  • Gupta, A. S., & Rao, S. K. (2001). Weathering indices and their applicability for crystalline rocks. Bulletin of Engineering Geology and the Environment, 60(3), 201–221. https://doi.org/10.1007/s100640100113

    Article  CAS  Google Scholar 

  • Gusain, G. S., Prasad, G., Prasad, Y., & Ramola, R. C. (2009). Comparison of indoor radon level with radon exhalation rate from soil in Garhwal Himalaya. Radiation Measurements, 44(9–10), 1032–1035.

    Article  CAS  Google Scholar 

  • Harrell, F. E. (2020). Hmisc: Harrell miscellaneous. R package version 4.4–2. https://CRAN.R-project.org/package=Hmisc

  • Huntley, B. J. (2019). Angola in outline: Physiography, climate and patterns of biodiversity. In B. J. Huntley, V. Russo, F. Lages, & N. Ferrand (Eds.), Biodiversity of Angola (pp. 15–42). Springer.

    Chapter  Google Scholar 

  • Jorge, M. P., & Pereira, A. J. S. C. (2020). A carsificação como fator potenciador de risco de radão: o caso das grutas da Moeda (Fátima–Portugal central) e região envolvente. Comuunicações Geológicas, 107(II), 173–177.

    Google Scholar 

  • Kávási, N., Németh, C., Kovács, T., Tokonami, S., Jobbágy, V., Várhegyi, A., Gorjánácz, Z., Vígh, T., & Somlai, J. (2007). Radon and thoron parallel measurements in Hungary. Radiation Protection Dosimetry, 123(2), 250–253.

    Article  Google Scholar 

  • Kemski, J., Klingel, R., Siehl, A., & Valdivia-Manchego, M. (2009). From radon hazard to risk prediction-based on geological maps, soil gas and indoor measurements in Germany. Environmental Geology, 56(7), 1269–1279.

    Article  CAS  Google Scholar 

  • Kgabi, N. A., Mokgethi, S. A., & Bubu, A. (2009). Atmospheric radioactivity associated with gold mining activities in the North West Province of South Africa. European Journal of Scientific Research, 33(4), 594–605.

    Google Scholar 

  • Kumar, A., & Chauhan, R. P. (2014). Measurement of indoor radon–thoron concentration and radon soil gas in some North Indian dwellings. Journal of Geochemical Exploration, 143, 155–162.

    Article  CAS  Google Scholar 

  • Lindsay, R., Newman, R. T., & Speelman, W. J. (2008). A study of airborne radon levels in Paarl houses (South Africa) and associated source terms, using electret ion chambers and gamma-ray spectrometry. Applied Radiation and Isotopes, 66(11), 1611–1614.

    Article  CAS  Google Scholar 

  • LNICT. (1980). Geologia de Angola, Carta na Escala 1/1000000, coordenada por Heitor de Carvalho, Laboratório Nacional de Investigação Científica Tropical, Folha n.º 3.

  • Lopes, F. C., Pereira, A. J., Mantas, V. M., & Mpengo, H. K. (2016). Morphostructural characterization of the western edge of the Huila Plateau (SW Angola), based on remote sensing techniques. Journal of African Earth Sciences, 117, 114–123.

    Article  Google Scholar 

  • Mahlobo, M., & Farid, S. M. (1992). Radon dosimetry using plastic nuclear track detector. Journal of Islamic Academy of Sciences, 5(3), 153–157.

    Google Scholar 

  • Mahlobo, M., Nsibande, M., & Farid, S. M. (1995). Indoor 222Rn measurements in Swaziland with the solid state nuclear track detector. Journal of Environmental Radioactivity, 27(3), 261–268.

    Article  CAS  Google Scholar 

  • Mann, N., Kumar, A., Kumar, S., & Chauhan, R. P. (2015). Radon–thoron measurements in air and soil from some districts of northern part of India. Nuclear Technology and Radiation Protection, 30(4), 294–300.

    Article  CAS  Google Scholar 

  • Marques, M. M. (1977). Esboço das unidades geomorfológicas de Angola (2a aproximação). Inst. Inv. Cient Trop. Garcia Orta, Serviços Geológicos, Lisboa., 2, 41–43.

    Google Scholar 

  • Matias, D. N. (1980). Carta Geológica de Angola à escala 1: 1000000 (folha 3). Instituto Geográfico Cadastral.

  • Mayya, Y. S., Mishra, R., Prajith, R., Gole, A. C., Sapra, B. K., Chougaonkar, M. P., Nair, R. R. K., Ramola, R. C., Karunakara, N., & Koya, P. K. M. (2012). Deposition-based passive monitors for assigning radon, thoron inhalation doses for epidemiological studies. Radiation Protection Dosimetry, 152(1–3), 18–24.

    Article  CAS  Google Scholar 

  • Millard, S. P. (2013). EnvStats: An R Package for Environmental Statistics. Springer. ISBN 978-1-4614-8455-4. https://www.springer.com

  • Munyaradzi, Z., Anna, K. N., & Makondelele, T. V. (2018). Excess lifetime cancer risk due to natural radioactivity in soils: Case of Karibib town in Namibia. The African Review of Physics, 13, 0012.

    Google Scholar 

  • Neznal, M., Neznal, M., & Šmarda, J. (1996). Assessment of radon potential of soils—A five-year experience. Environment International, 22, 819–828.

    Article  Google Scholar 

  • Njinga, R. L., Tshivhase, M. V., Kgabi, N. A., & Zivuku, M. (2016). Hazards index analysis of Gamma emitting radionuclides in selected areas around the Uranium Mine sites at Erongo Region, Namibia. Journal of Environmental Science and Management, 19(2), 1–7.

    Article  Google Scholar 

  • Nsibande, M. C., Mahlobo, M., & Farid, S. M. (1994). Radon levels inside residences in Swaziland. Science of the Total Environment, 151(3), 181–185.

    Article  CAS  Google Scholar 

  • Omori, Y., Tamakuma, Y., Nugraha, E. D., Suzuki, T., Saputra, M. A., Hosoda, M., & Tokonami, S. (2020). Impact of wind speed on response of diffusion-type radon-thoron detectors to thoron. International Journal of Environmental Research and Public Health, 17(9), 3178.

    Article  CAS  Google Scholar 

  • Otoo, F., Darko, E. O., Garavaglia, M., Adukpo, O. K., Amoako, J. K., Tandoh, J. B., Inkoom, S., Nunoo, S., & Adu, S. (2021). Assessment of natural radioactivity and radon exhalation rate associated with rock properties used for construction in greater Accra region, Ghana. Journal of Radioanalytical and Nuclear Chemistry, 1–13.

  • Oyedele, J. A., Shimboyo, S., Sitoka, S., & Gaoseb, F. (2010). Assessment of natural radioactivity in the soils of Rössing Uranium Mine and its satellite town in western Namibia, southern Africa. Nuclear Instruments and Methods in Physics Research Section a: Accelerators, Spectrometers, Detectors and Associated Equipment, 619(1–3), 467–469.

    Article  CAS  Google Scholar 

  • Palarea-Albaladejo, J., & Martin-Fernandez, J. A. (2013). Values below detection limit in compositional chemical data. Analytica Chimica Acta, 764, 32–43.

    Article  CAS  Google Scholar 

  • Pedreira, A. J., & Waele, B. (2008). Contemporaneous evolution of the Palaeoproterozoic e mesoproterozoic sedimentary basins of the São Francisco-Congo Craton. Geological Society, London, Special Publications, 294, 33–48.

    Article  Google Scholar 

  • Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644.

    Article  Google Scholar 

  • Pereira, E., Van-Dúnem, M.V., & Tassinari, C.C.G. (2006). Carta Geológica de Angola, Notícia Explicativa da Folha Sul D-33/N-III (Bibala), escala 1: 100 000:). Publicação do Instituto Geológico de Angola (p. 57).

  • Pereira, E., Rodrigues, J. F., Tassinari, C. C. G., Van-Dúnem, M. V. (2013a). Geologia da Região de Lubango, SW de Angola. Evolução no contexto do cratão do Congo. Instituto Geológico de Angola (p. 160).

  • Pereira, E., Rodrigues, J., Van-Dúnem, M. V. (2013b). Carta Geológica de Angola, à escala 1: 250 000: Folha Sul D-33/T (Chibia). Publicação do Instituto Geológico de Angola.

  • Pereira, A., Lamas, R., Miranda, M., Domingos, F., Neves, L., Ferreira, N., & Costa, L. (2017). Estimation of the radon production rate in granite rocks and evaluation of the implications for geogenic radon potential maps: A case study in Central Portugal. Journal of Environmental Radioactivity, 166, 270–277.

    Article  CAS  Google Scholar 

  • Pereira, A. J. S. C., Pereira, D., Neves, L., Peinado, M., & Armenteros, I. (2013). Radiological data on building stones from a Spanish region: Castilla y León. Natural Hazards and Earth System Sciences, 13(12), 3493–3501.

    Article  Google Scholar 

  • Pereira, E., Tassinari, C. C., Rodrigues, J. F., & Van-Dúnem, M. V. (2011). New data on the deposition age of the volcano-sedimentary Chela Group and its Eburnean basement: Implications to post-Eburnean crustal evolution of the SW of Angola. Comunicações Geológicas, 98, 29–40.

    Google Scholar 

  • Prasad, G., Gusain, G. S., Joshi, V., & Ramola, R. C. (2010). Assessment of dose due to exposure to indoor radon and thoron progeny. Nuclear Technology and Radiation Protection, 25(3), 198–204.

    Article  Google Scholar 

  • Preetz, H., Altfelder, S., Hennings, V., Igel, J. (2009). Classification of soil magnetic susceptibility and prediction of metal detector performance: Case study of Angola. In Detection and sensing of mines, explosive objects, and obscured targets XIV (Vol. 7303, p. 730313). International Society for Optics and Photonics.

  • R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Ramola, R. C., Prasad, M., Kandari, T., Pant, P., Bossew, P., Mishra, R., & Tokonami, S. (2016). Dose estimation derived from the exposure to radon, thoron and their progeny in the indoor environment. Scientific Reports, 6(1), 1–16.

    Article  Google Scholar 

  • Regenspurg, S., Margot-Roquier, C., Harfouche, M., Froidevaux, P., Steinmann, P., Junier, P., & Bernier-Latmani, R. (2010). Speciation of naturally-accumulated uranium in an organic-rich soil of an alpine region (Switzerland). Geochimica Et Cosmochimica Acta, 74(7), 2082–2098.

    Article  CAS  Google Scholar 

  • Revelle, W. (2020). psych: Procedures for personality and psychological research. Evanston: Northwestern University. https://CRAN.R-project.org/package=psych, version 2.0.12.

  • Ruffell, A. (2016). Do spectral gamma ray data really reflect humid–arid palaeoclimates? A test from Palaeogene Interbasaltic weathered horizons at the Giant’s Causeway, N. Ireland. Proceedings of the Geologists Association, 127(1), 18–28.

    Article  Google Scholar 

  • Ruffell, A., & Worden, R. (2000). Palaeoclimate analysis using spectral gamma-ray data from the Aptian (Cretaceous) of southern England and southern France. Palaeogeography, Palaeoclimatology, Palaeoecology, 155(3–4), 265–283.

    Article  Google Scholar 

  • Sainz, C., Quindós, L. S., Fuente, I., Nicolás, J., & Quindós, L. (2007). Analysis of the main factors affecting the evaluation of the radon dose in workplaces: The case of tourist caves. Journal of Hazardous Materials, 145(3), 368–371.

    Article  CAS  Google Scholar 

  • Sakoda, A., Ishimori, Y., & Yamaoka, K. (2011). A comprehensive review of radon emanation measurements for mineral, rock, soil, mill tailing and fly ash. Applied Radiation and Isotopes, 69(10), 1422–1435.

    Article  CAS  Google Scholar 

  • Salminen, R., Batista, M.J., Bidovec, M., Demetriades, A., De Vivo, B., De Vos, W., Duris,M., Gilucis, A., Gregorauskiene, V., Halamic, J., Heitzmann, P., Lima, A., Jordan, G., Klaver, G., Klein, P., Lis, J., Locutura, J., Marsina, K., Mazreku, A., O’Connor, P.J., Olsson, S., Ottesen,R.T., Petersell, V., Plant, J.A., Reeder, S., Salpeteur, I.,Sandström, H., Siewers, U., Steenfeldt, A., Tarvainen, T. (2005). FOREGS geochemical atlas of Europe, part 1: Background information, methodology and maps. Geological Survey of Finland, Otamedia Oy, Espoo, Finland (p. 525).

  • Salupeto-Dembo, J., Völgyesi, P., Szabó, Z., & Szabó, C. (2018). Contribution of thoron to the inhalation dose in Angolan adobe houses. In Kovács, T., Tóth-Bodrogi, E., & Bátor, G. (Eds). VI. Terrestrial radiosotopes in environment. International conference on environmental protection, Vesprém (p. 55).

  • Salupeto-Dembo, J., Szabó-Krausz, Z., Völgyesi, P., & Szabό, C. (2020). Radon and thoron radiation exposure of the Angolan population living in adobe houses. Journal of Radioanalytical and Nuclear Chemistry, 325, 271–282.

    Article  CAS  Google Scholar 

  • Scheib, C., Appleton, J. D., Miles, J. C. H., & Hodgkinson, E. (2013). Geological controls on radon potential in England. Proceedings of the Geologists’ Association, 124(6), 910–928.

    Article  Google Scholar 

  • Sêco, S. L., Domingos, F. P., Pereira, A. J. S. C., & Duarte, L. V. (2020). Estimation of the radon production potential in sedimentary rocks: A case study in the Lower and Middle Jurassic of the Lusitanian Basin (Portugal). Journal of Environmental Radioactivity, 220, 106272.

    Article  Google Scholar 

  • Sêco, S. L. R., Pereira, A. J. S. C., Duarte, L. V., & Domingos, F. (2021). Sources of uncertainty in field gamma-ray spectrometry: Implications for exploration in the Lower-Middle Jurassic sedimentary succession of the Lusitanian Basin (Portugal). Journal of Geochemical Exploration, 227, 106799. https://doi.org/10.1016/j.gexplo.2021.106799

    Article  CAS  Google Scholar 

  • Shang, B., Chen, B., Gao, Y., Wang, Y., Cui, H., & Li, Z. (2005). Thoron levels in traditional Chinese residential dwellings. Radiation and Environmental Biophysics, 44(3), 193–199.

    Article  CAS  Google Scholar 

  • Singh, S., Kumar, M., & Mahajan, R. K. (2005). The study of indoor radon in dwellings of Bathinda district, Punjab, India and its correlation with uranium and radon exhalation rate in soil. Radiation Measurements, 39(5), 535–542.

    Article  CAS  Google Scholar 

  • Somogyi, G., Paripas, B., & Varga, Z. (1984). Measurement of radon, radon daughters and thoron concentrations by multi-detector devices. Nuclear Tracks and Radiation Measurements, 8(1–4), 423–427.

    Article  CAS  Google Scholar 

  • Sorimachi, A., Tokonami, S., Omori, Y., & Ishikawa, T. (2012). Performance test of passive radon–thoron discriminative detectors on environmental parameters. Radiation Measurements, 47(6), 438–442.

    Article  CAS  Google Scholar 

  • Szeiler, G., Somlai, J., Ishikawa, T., Omori, Y., Mishra, R., Sapra, B. K., Mayya, Y. S., Tokonami, S., Cordás, A., & Kovács, T. (2012). Preliminary results from an indoor radon thoron survey in Hungary. Radiation Protection Dosimetry, 152(1–3), 243–246.

    Article  CAS  Google Scholar 

  • Tokonami, S. (2010). Why is 220Rn (thoron) measurement important? Radiation Protection Dosimetry, 141(4), 335–339.

    Article  CAS  Google Scholar 

  • Tokonami, S., Takahashi, H., Kobayashi, Y., Zhuo, W., & Hulber, E. (2005). Up-to-date radon-thoron discriminative detector for a large scale survey. Review of Scientific Instruments, 76(11), 113505.

    Article  Google Scholar 

  • Torquato, J. R., & Forgaça, A. C. (1981). Correlação entre o Supergrupo Espinhaço no Brasil, o Grupo Chela em Angola e as formações Nosib e Khoabendus da Namíbia. In: Anais do Simpósio sobre o Craton do São Francisco e suas Faixas Marginais, Sociedade Brasileira de Geologia/Coordenação da Produção Mineral, Salvador (pp. 87–98).

  • Torquato, J., Silva, A., Cordani, U., & Kawashita, K. (1979). Evolução geológica do cinturão móvel do Quipungo. Academia Brasileira Ciências, 51(1), 133–144.

    CAS  Google Scholar 

  • UNSCEAR, United Nation Scientific Committee on the Effect of Atomic Radiation. (2000). Annex B: Exposures from Natural Radiation Sources. United Nations (p. 104).

  • UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiation. (2010). Source and effects of ionizing radiation. UNSCEAR 2008, report to the general assembly with scientific annexes (Vol. I, p. 463).

  • Vaupotič, J., & Kávási, N. (2010). Preliminary study of thoron and radon levels in various indoor environments in Slovenia. Radiation Protection Dosimetry, 141(4), 383–385.

    Article  Google Scholar 

  • Virk, H. S., & Sharma, N. (2000). Indoor radon/thoron survey report from Hamirpur and Una districts, Himachal Pradesh, India. Applied Radiation and Isotopes, 52(1), 137–141.

    Article  CAS  Google Scholar 

  • WHO, World Health Organization. (2009). WHO handbook on indoor radon—A public health perspective. WHO Library Cataloguing-in-Publication Data (p. 110).

  • Zhuo, W., Tokonami, S., Yonehara, H., & Yamada, Y. (2002). A simple passive monitor for integrating measurements of indoor thoron concentrations. Review of Scientific Instruments, 73(8), 2877–2881.

  • Zunic, Z. S., Stojanovska, Z., Veselinovic, N., Mishra, R., Yarmoshenko, I. V., Sapra, B. K., Ishikawa, T., Omori, Y., Curguz, Z., Bossew, P., Udovocic, V., & Ramola, R. C. (2017). Indoor radon, thoron and their progeny concentrations in high thoron rural Serbia environments. Radiation Protection Dosimetry, 177(1–2), 36–39.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial and technical support provided by the Laboratory of Natural Radioactivity of the Department of Earth Sciences (University of Coimbra, Portugal), Instituto do Ambiente, Tecnologia e Vida (Portugal) and Instituto Pedro Nunes (Portugal). All participants in the indoor radon concentrations survey are also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Edson Baptista was responsible for sampling, sample preparation and drafting the article. Alcides J. S. C. Pereira was responsible for conception and design, sampling and for critically revising the article. Filipa P. Domingos was responsible for data analysis and interpretation, and drafting the article. Sérgio L. R. Sêco was responsible for data acquisition and drafting the article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sérgio L. R. Sêco.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors are responsible for the correctness of the statements provided in the manuscript. The publication has been approved by all co-authors. All authors agree with the sequence of authors listed and the designated corresponding author. Data are available by request. Consent was obtained from all participants pertaining to the indoor radon measurements performed in the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baptista, E., Pereira, A.J.S.C., Domingos, F.P. et al. Radon and thoron concentrations in the southwest region of Angola: dose assessment and implications for risk mapping. Environ Geochem Health 45, 665–686 (2023). https://doi.org/10.1007/s10653-022-01226-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01226-8

Keywords

Navigation