Skip to main content
Log in

Ludwig Prandtl’s envisage: elimination of von Kármán vortex street with boundary-layer suction

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

The present study is a revisit to Ludwig Prandtl’s elimination of von Kármán vortex street behind a circular cylinder by using steady suction in the boundary layer. We show in particular the full-time vortex evolutions and vortex dynamics in the wake. The wind tunnel investigations are conducted at the Reynolds number (Re) of 2.0 × 104. Slot suction is implemented symmetrically on both lower and upper boundary layers of the cylindrical test model to modify the flow separation process and to eliminate the downstream vortex street. The boundary layer suction is described by the dimensionless momentum parameter of suction relative to the free-stream airflow. A high-speed particle image velocimetry system is employed in the present study to visualize the flow patterns and capture the wake dynamics of the natural and modified cylinders controlled with boundary-layer suction.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arakeri JH, Shankar P (2000) Ludwig prandtl and boundary layers in fluid flow. Resonance 5(12):48–63

    Article  Google Scholar 

  • Bearman P, Branković M (2004) Experimental studies of passive control of vortex-induced vibration. Eur J Mech B/Fluids 23(1):9–15

    Article  MATH  Google Scholar 

  • Chaudhry IA, Sultan T, Siddiqui FA, Farhan M, Asim M (2017) The flow separation delay in the boundary layer by induced vortices. J Vis 20(2):251–261

    Article  Google Scholar 

  • Chen WL, Li H, Hu H (2014) An experimental study on a suction flow control method to reduce the unsteadiness of the wind loads acting on a circular cylinder. Exp Fluids 55(4):1707

    Article  Google Scholar 

  • Choi H, Jeon WP, Kim J (2008) Control of flow over a bluff body. Annu Rev Fluid Mech 40(1):113–139

    Article  MathSciNet  MATH  Google Scholar 

  • Feng LH, Wang JJ (2010) Circular cylinder vortex-synchronization control with a synthetic jet positioned at the rear stagnation point. J Fluid Mech 662:232–259

    Article  MATH  Google Scholar 

  • Feng LH, Wang JJ (2012) Synthetic jet control of separation in the flow over a circular cylinder. Exp Fluids 53(2):467–480

    Article  Google Scholar 

  • Feng LH, Wang JJ (2014) Modification of a circular cylinder wake with synthetic jet: vortex shedding modes and mechanism. Eur J Mech B/Fluids 43:14–32

    Article  MATH  Google Scholar 

  • Feng LH, Wang JJ, Pan C (2010) Effect of novel synthetic jet on wake vortex shedding modes of a circular cylinder. J Fluids Struct 26(6):900–917

    Article  Google Scholar 

  • Feng LH, Wang JJ, Pan C (2011) Proper orthogonal decomposition analysis of vortex dynamics of a circular cylinder under synthetic jet control. Phys Fluids 23(1):014106

    Article  Google Scholar 

  • Hu G, Kwok K (2020) Predicting wind pressures around circular cylinders using machine learning techniques. J Wind Eng Ind Aerodyn 198:104099

    Article  Google Scholar 

  • Huang X (1995) Suppression of vortex shedding from a circular cylinder by internal acoustic excitation. J Fluids Struct 9(5):563–570

    Article  Google Scholar 

  • Huang S (2011) Viv suppression of a two-degree-of-freedom circular cylinder and drag reduction of a fixed circular cylinder by the use of helical grooves. J Fluids Struct 27(7):1124–1133

    Article  Google Scholar 

  • Hwang DP (1998) Skin-friction reduction by a micro-blowing technique. AIAA J 36(3):480–481

    Article  Google Scholar 

  • Joslin RD (1998) Aircraft laminar flow control. Annu Rev Fluid Mech 30(1):1–29

    Article  Google Scholar 

  • Kim J, Choi H (2005) Distributed forcing of flow over a circular cylinder. Phys Fluids 17(3):033103

    Article  MATH  Google Scholar 

  • Ko N, Leung Y, Chen J (1987) Flow past v-groove circular cylinders. AIAA J 25(6):806–811

    Article  Google Scholar 

  • Konstantinidis E, Balabani S, Yianneskis M (2007) Bimodal vortex shedding in a perturbed cylinder wake. Phys Fluids 19(1):011701

    Article  MATH  Google Scholar 

  • Korkischko I, Meneghini J (2012) Suppression of vortex-induced vibration using moving surface boundary-layer control. J Fluids Struct 34:259–270

    Article  Google Scholar 

  • Kornilov VI, Boiko AV (2012) Efficiency of air microblowing through microperforated wall for flat plate drag reduction. AIAA J 50(3):724–732

    Article  Google Scholar 

  • Law Y, Jaiman R (2018) Passive control of vortex-induced vibration by spanwise grooves. J Fluids Struct 83:1–26

    Article  Google Scholar 

  • Lee SJ, Jang YG (2005) Control of flow around a naca 0012 airfoil with a micro-riblet film. J Fluids Struct 20(5):659–672

    Article  Google Scholar 

  • Ma X, Karamanos GS, Karniadakis G (2000) Dynamics and low-dimensionality of a turbulent near wake. J Fluid Mech 410:29–65

    Article  MathSciNet  MATH  Google Scholar 

  • Munir A, Zhao M, Wu H, Lu L (2019) Numerical investigation of wake flow regimes behind a high-speed rotating circular cylinder in steady flow. J Fluid Mech 878:875–906

    Article  MathSciNet  MATH  Google Scholar 

  • Niemann HJ, Hölscher N (1990) A review of recent experiments on the flow past circular cylinders. J Wind Eng Ind Aerodyn 33(1–2):197–209

    Article  Google Scholar 

  • Park J, Derrandji-Aouat A, Wu B, Nishio S, Jacquin E (2008) Uncertainty analysis: particle imaging velocimetry. In: ITTC Recommended Procedures and Guidelines, International Towing Tank Conference

  • Perrin R, Braza M, Cid E, Cazin S, Barthet A, Sevrain A, Mockett C, Thiele F (2007) Obtaining phase averaged turbulence properties in the near wake of a circular cylinder at high reynolds number using pod. Exp Fluids 43(2–3):341–355

    Article  Google Scholar 

  • Pudsey AS, Wheatley V, Boyce RR (2015) Supersonic boundary-layer combustion via multiporthole injector arrays. AIAA J 53(10):2890–2906

    Article  Google Scholar 

  • Radi A, Thompson MC, Rao A, Hourigan K, Sheridan J (2013) Experimental evidence of new three-dimensional modes in the wake of a rotating cylinder. J Fluid Mech 734:567–594

    Article  MATH  Google Scholar 

  • Ramsay J, Sellier M, Ho WH (2020) Non-uniform suction control of flow around a circular cylinder. Int J Heat Fluid Flow 82:108559

    Article  Google Scholar 

  • Schlichting H, Gersten K, Krause E, Oertel H, Mayes K (1955) Boundary-layer theory, vol 7. Springer, Berlin

    Google Scholar 

  • Shi XD, Feng LH (2015) Control of flow around a circular cylinder by bleed near the separation points. Exp Fluids 56(12):214

    Article  Google Scholar 

  • Shih W, Wang C, Coles D, Roshko A (1993) Experiments on flow past rough circular cylinders at large reynolds numbers. J Wind Eng Ind Aerodyn 49(1–3):351–368

    Article  Google Scholar 

  • Sirovich L (1987) Turbulence and the dynamics of coherent structures. I. Coherent structures. Q Appl Math 45(3):561–571

    Article  MathSciNet  MATH  Google Scholar 

  • Sung Y, Kim W, Mungal M, Cappelli M (2006) Aerodynamic modification of flow over bluff objects by plasma actuation. Exp Fluids 41(3):479–486

    Article  Google Scholar 

  • Thomas FO, Kozlov A, Corke TC (2008) Plasma actuators for cylinder flow control and noise reduction. AIAA J 46(8):1921–1931

    Article  Google Scholar 

  • Trim A, Braaten H, Lie H, Tognarelli M (2005) Experimental investigation of vortex-induced vibration of long marine risers. J Fluids Struct 21(3):335–361

    Article  Google Scholar 

  • Van Oudheusden BW, Scarano F, Van Hinsberg NP, Watt DW (2005) Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence. Exp Fluids 39(1):86–98

    Article  Google Scholar 

  • Viswanath P, Mukund R (1995) Turbulent drag reduction using riblets on a supercritical airfoil at transonic speeds. AIAA J 33(5):945–947

    Article  Google Scholar 

  • Walsh MJ (1983) Riblets as a viscous drag reduction technique. AIAA J 21(4):485–486

    Article  Google Scholar 

  • Wang S, Chen Y, Liu YZ (2018) Measurement of unsteady flow structures in a low-speed wind tunnel using continuous wave laser-based tr-piv: near wake behind a circular cylinder. J Vis 21(1):73–93

    Article  Google Scholar 

  • Xia C, Wei Z, Yuan H, Li Q, Yang Z (2018) Pod analysis of the wake behind a circular cylinder coated with porous media. J Vis 21(6):965–985

    Article  Google Scholar 

  • Zdravkovich M (1981) Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding. J Wind Eng Ind Aerodyn 7(2):145–189

    Article  Google Scholar 

  • Zhou X, Wang J, Hu Y (2019) Experimental investigation on the flow around a circular cylinder with upstream splitter plate. J Vis 22(4):683–695

    Article  Google Scholar 

Download references

Acknowledgements

This experimental work is funded by the National Natural Science Foundation of China (52008140, 51978222 and 51722805) and the Fundamental Research Funds for the Central Universities (HIT.BRETIV 201803 and 2020AUGA5710001020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donglai Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Huang, Y., Gao, D. et al. Ludwig Prandtl’s envisage: elimination of von Kármán vortex street with boundary-layer suction. J Vis 24, 237–250 (2021). https://doi.org/10.1007/s12650-020-00708-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12650-020-00708-0

Keywords

Navigation