Skip to main content
Log in

Control of flow around a circular cylinder by bleed near the separation points

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The flow around a circular cylinder under bleed control is experimentally investigated in a water tunnel. The bleed jets are issued from the narrow slots directed from the front stagnation point to the positions near the upper and lower separation points. The Reynolds numbers based on the cylinder diameter are Re = 400, 780, and 1470, while the widths of the bleed slot are selected as w/D = 0.05, 0.1, and 0.2. The bleed jet interacts with the boundary layer, postponing the separation point to be near the downstream edge of the slot. It further modifies the wake shear layer, which moves away from the centerline. Thus, the recirculation bubble downstream of the circular cylinder is enlarged and the near wake width are increased, resulting in an increased vortex formation length and a decreased vortex shedding frequency. Such changes of the flow field increase with the bleed width. The vortex dynamics is also analyzed, showing that the wake pattern could be modified by the bleed control. The wake vortex is converted into a bistable mode at w/D = 0.1 and 0.2, Re = 780 and 1470, where the symmetric and asymmetric modes are both observed, while all the control cases at Re = 400 still show the asymmetric mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Akilli H, Sahin B, Tumen NF (2005) Suppression of vortex shedding of circular cylinder in shallow water by a splitter plate. Flow Meas Instrum 16(4):211–219

    Article  Google Scholar 

  • Akilli H, Karakus C, Akar A, Sahin B, Tumen NF (2008) Control of vortex shedding of circular cylinder in shallow water flow using an attached splitter plate. J Fluids Eng 130(4):041401

    Article  Google Scholar 

  • Antonia RA, Rajagopalan S (1990) Determination of drag of a circular cylinder. AIAA J 28(10):1833–1834

    Article  Google Scholar 

  • Aydın BT, Cetiner O, Unal MF (2010) Effect of self-issuing jets along the span on the near-wake of a square cylinder. Exp Fluids 48(6):1081–1094

    Article  Google Scholar 

  • Baek H, Karniadakis GE (2009) Suppressing vortex-induced vibrations via passive means. J Fluids Struct 25(5):848–866

    Article  Google Scholar 

  • Balachandar S, Mittal R, Najjar FM (1997) Properties of the mean recirculation region in the wakes of two-dimensional bluff bodies. J Fluid Mech 351:167–199

    Article  MATH  Google Scholar 

  • Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25:539–575

    Article  MathSciNet  Google Scholar 

  • Cantwell B, Coles D (1983) An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. J Fluid Mech 136:321–374

    Article  Google Scholar 

  • Cao S, Ozono S, Tamura Y, Ge Y, Kikugawa H (2010) Numerical simulation of reynolds number effects on velocity shear flow around a circular cylinder. J Fluids Struct 26(5):685–702

    Article  Google Scholar 

  • Carlier J, Stanislas M (2005) Experimental study of eddy structures in a turbulent boundary lauyer using particle image velocimetry. J Fluid Mech 535:143–188

    Article  MathSciNet  MATH  Google Scholar 

  • Celik B, Beskok A (2009) Mixing induced by a transversely oscillating circular cylinder in a straight channel. Phys Fluids 21(7):073601

    Article  Google Scholar 

  • Celik B, Akdag U, Gunes S, Beskok A (2008) Flow past an oscillating circular cylinder in a channel with an upstream splitter plate. Phys Fluids 20(10):103603

    Article  Google Scholar 

  • Champagnat F, Plyer A, Besnerais GL, Leclaire B, Davoust S, Sant YL (2011) Fast and accurate piv computation using highly parallel iterative correlation maximization. Exp Fluids 50:1169–1182

    Article  Google Scholar 

  • Chen WL, Xin DB, Xu F, Li H, Ou JP, Hu H (2013) Suppression of vortex-induced vibration of a circular cylinder using suction-based flow control. J Fluids Struct 42:25–39

    Article  Google Scholar 

  • Choi H, Jeon WP, Kim J (2008) Control of flow over a bluff body. Ann Rev Fluid Mech 40:113–139

    Article  MathSciNet  Google Scholar 

  • Christensen KT (2004) The influence of peak-locking errors on turbulence statistics computed from piv ensembles. Exp Fluids 36(3):484–497

    Article  Google Scholar 

  • Corke TC, Enloe CL, Wilkinson SP (2010) Dielectric barrier discharge plasma actuators for flow control. Annu Rev Fluid Mech 42:505–529

    Article  Google Scholar 

  • Dong S, Triantafyllou GS, Karniadakis GE (2008) Elimination of vortex streets in bluff-body flows. Phys Rev Lett 100(20):204501

    Article  Google Scholar 

  • Feng LH, Wang JJ (2010) Circular cylinder vortex-synchronization control with a synthetic jet positioned at the rear stagnation point. J Fluid Mech 662:232–259

    Article  MATH  Google Scholar 

  • Feng LH, Wang JJ (2014) Modification of a circular cylinder wake with synthetic jet: Vortex shedding modes and mechanism. Eur J Mech B Fluid 43:14–32

    Article  MATH  Google Scholar 

  • Feng LH, Wang JJ, Pan C (2011) Proper orthogonal decomposition analysis of vortex dynamics of a circular cylinder under synthetic jet control. Phys Fluids 23(1):014106

    Article  Google Scholar 

  • Fey U, Konig M, Eckelmann H (1998) A new strouhal-reynolds number relationship for the circular cylinder in the range 47 \(\le\) Re \(\le\) 2 \(\times\) 10\(^{5}\). Phys Fluids 10(7):1547–1548

    Article  Google Scholar 

  • Fu H, Rockwell D (2005a) Shallow flow past a cylinder: control of the near wake. J Fluid Mech 539:1–24

    Article  MATH  Google Scholar 

  • Fu H, Rockwell D (2005b) Shallow flow past a cylinder: transition phenomena at low reynolds number. J Fluid Mech 540:75–97

    Article  MATH  Google Scholar 

  • Glezer A, Amitay M (2002) Synthetic jets. Annu Rev Fluid Mech 34:503–529

    Article  MathSciNet  Google Scholar 

  • He GS, Li N, Wang JJ (2014) Drag reduction of square cylinders with cut-corners at the front edges. Exp Fluids 55(6):1745

    Article  Google Scholar 

  • Hwang JY, Yang KS (2007) Drag reduction on a circular cylinder using dual detached splitter plates. J Wind Eng Ind Aerodyn 95(7):551–564

    Article  Google Scholar 

  • Hwang JY, Yang KS, Sun SH (2003) Reduction of flow-induced forces on a circular cylinder using a detached splitter plate. Phys Fluids 15(8):2433–2436

    Article  Google Scholar 

  • Kim J, Choi H (2005) Distributed forcing of flow over a circular cylinder. Phys Fluids 17:033103

    Article  Google Scholar 

  • Kim W, Yoo YJ, Sung J (2006) Dynamics of vortex lock-on in a perturbed cylinder wake. Phys Fluids 18(7):074103

    Article  Google Scholar 

  • Konstantinidis E, Balabani S (2007) Symmetric vortex shedding in the near wake of a circular cylinder due to streamwise perturbations. J Fluids Struct 23(7):1047–1063

    Article  Google Scholar 

  • Konstantinidis E, Balabani S, Yianneskis M (2003) The effect of flow perturbations on the near wake characteristics of a circular cylinder. J Fluids Struct 18(3–4):367–386

    Article  Google Scholar 

  • Konstantinidis E, Balabani S, Yianneskis M (2007) Bimodal vortex shedding in a perturbed cylinder wake. Phys Fluids 19(1):011701

    Article  Google Scholar 

  • Liu YG, Feng LH (2015) Suppression of lift fluctuations on a circular cylinder by inducing the symmetric vortex shedding mode. J Fluids Struct 54:743–759

    Article  Google Scholar 

  • Ma X, Karamanos GS, Karniadakis GE (2000) Dynamics and low-dimensionality of a turbulent near wake. J Fluid Mech 410:29–65

    Article  MathSciNet  MATH  Google Scholar 

  • Mittal R, Rampunggoon P (2002) On the virtual aeroshaping effect of synthetic jets. Phys Fluids 14(4):1533–1536

    Article  Google Scholar 

  • Raffel M, Willert CE, Wereley ST, Kompenhans J (2007) Particle image velocimetry. Springer, Berlin

    Google Scholar 

  • Sellappan P, Pottebaum T (2014) Vortex shedding and heat transfer in rotationally oscillating cylinders. J Fluid Mech 748:549–579

    Article  Google Scholar 

  • Serson D, Meneghini JR, Carmo BS, Volpe EV, Gioria RS (2014) Wake transition in the flow around a circular cylinder with a splitter plate. J Fluid Mech 755:582–602

    Article  Google Scholar 

  • Sung J, Yoo JY (2003) Near-wake vortex motions behind a circular cylinder at low reynolds number. J Fluids Struct 17(2):261–274

    Article  Google Scholar 

  • Tan GK, Wang JJ, Li QS (2001) Drag reduction technique of cylinder and mechanism research. J Beijing Univ Aeronaut Astronaut 27(6):658–661 (in Chinese)

    Google Scholar 

  • Wang JJ, Choi KS, Feng LH, Jukes TN, Whalley RD (2013a) Recent developments in DBD plasma flow control. Prog Aeros Sci 62:52–78

    Article  Google Scholar 

  • Wang JJ, Pan C, Choi KS, Gao L, Lian QX (2013b) Formation growth and instability of vortex pairs in an axisymmetric stagnation flow. J Fluid Mech 725:681–708

    Article  MATH  Google Scholar 

  • Williamson CHK, Govardhan R (2004) Vortex-induced vibrations. Annu Rev Fluid Mech 36:413–456

    Article  MathSciNet  Google Scholar 

  • Wong HY (1985) Wake flow stabilization by the action of base bleed. J Fluid Eng 107(3):378–384

    Article  Google Scholar 

  • Zdravkovich MM (1997) Flow around circular cylinders, volume 1: fundamentals. Oxford University Press, Oxford

    Google Scholar 

  • Zhang PF, Wang JJ, Feng LH (2008) Review of zero-net-mass-flux jet and its application in separation flow control. Sci China Ser E Technol Sci 51(9):1315–1344

    Article  Google Scholar 

  • Zhang QS, Liu YZ, Wang SF (2014) The identification of coherent structures using proper orthogonal decomposition and dynamic mode decomposition. J Fluids Struct 49:53–72

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (Nos. 11202015 and 11327202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Hao Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, XD., Feng, LH. Control of flow around a circular cylinder by bleed near the separation points. Exp Fluids 56, 214 (2015). https://doi.org/10.1007/s00348-015-2083-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-015-2083-7

Keywords

Navigation