Skip to main content
Log in

Combined effects of suction/injection and exponentially decaying/growing time-dependent pressure gradient on unsteady Dean flow: a semi-analytical approach

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

A two-dimensional mathematical model is developed and solved semi-analytically in order to theoretically examine the impact of suction/injection and an exponentially decaying/growing time-dependent pressure gradient on unsteady Dean flow through a coaxial cylinder. The walls of the cylinders are porous so as to enable the superimposition of the radial flow. The solution of the governing momentum and continuity equations are derived using a two-step process, the Laplace transformation in conjunction with the Riemann Sum-Approximation (RSA). For accuracy check, the steady state solution is computed and numerical values obtained using the Riemann-Sum Approximation (RSA) is compared with the already established results. It is found out that for an increasing time, a growing pressure gradient enhances the flow formation for both suction and injection, although the effect on the azimuthal velocity profile is subtle when suction is applied on porous walls. Moreover, the skin frictions on the walls can be minimized by imposing a decaying pressure gradient for suction/injection, however the behaviour is seen clearly when fluid particles are injected through the porous cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

a :

Radius of the inner cylinder (m)

b :

Radius of the outer cylinder (m)

D :

Diameter of non-circular geometry

D n :

Dean number

p :

Static pressure (Kg/ms2)

R :

Dimensionless radial distance

R c :

Radius of curvature

Re :

Reynolds number (suction/injection parameter)

s :

Laplace parameter

t :

Dimensionless time (s)

U 0 :

Reference velocity (m/s)

ν r :

Radial velocity (m/s)

ν :

Circumferential velocity (m/s)

V :

Dimensionless velocity

δ :

Coefficient of time-dependent pressure gradient

λ :

Radii ratio (b/a)

ρ :

Fluid density (kg/m3)

τ :

Skin friction

μ :

Dynamic viscosity of the fluid (Kg/ms)

References

  • Dean, W.R.: Fluid motion in a curved channel. Proc. R. Soc. Lond A Math. Phys. Eng. Sci. 121, 402–420 (1928)

    MATH  Google Scholar 

  • Dryden, H.L., Murnaghan, F.D., Bateman, H.: Hydrodynamics. Dover Publ. Inc, New York (1956)

    MATH  Google Scholar 

  • Hamza, S.E.E.: MHD flow of an Oldroyd–B fluid through porous medium in a circular channel under the effect of time dependent pressure gradient. Am. J. Fluid Dyn. 7(1), 1–11 (2017)

    Google Scholar 

  • Gupta, R.K., Gupta, K.: Steady flow of an elastico-viscous fluid in porous coaxial circular cylinder. Ind. J. Pure Appl. Math. 27(4), 423–434 (1996)

    MATH  Google Scholar 

  • Fan, C., Chao, B.T.: Unsteady, laminar, incompressible flow through rectangular ducts. ZAMP 16(3), 1–360 (1965)

    MATH  Google Scholar 

  • Tsangaris, S.: Oscillatory flow of an incompressible, viscous-fluid in a straight annular pipe. J. Mec. Theor. Appl. 3(3), 467 (1984)

    MATH  Google Scholar 

  • Tsangaris, S., Kondaxakis, D., Vlachakis, N.W.: Exact solution of the Navier-Stokes equations for the pulsating dean flow in a channel with porous walls. Int. J. Eng. Sci. 44, 1498–1509 (2006)

    Article  MATH  Google Scholar 

  • Tsangaris, S., Vlachakis, N.W.: Exact solution for the pulsating finite gap dean flow. Appl. Math. Model. 31, 1899–1906 (2007)

    Article  MATH  Google Scholar 

  • Yen, J.T., Chang, C.C.: Magnetohydrodynamic channel flow under time-dependent pressure gradient. Phys. Fluids. 4(11), 1355–1360 (1961). https://doi.org/10.1063/1.1706224

    Article  MathSciNet  MATH  Google Scholar 

  • Nandi, S.: Unsteady hydromagnetic flow in a porous annulus with time-dependent pressure gradient. Pure. Appl. Geophys. 79, 33–40 (1970)

    Article  Google Scholar 

  • McGinty, S., McKee, S., McDermott, R.: Analytic solutions of Newtonian and non-Newtonian pipe flows subject to a general time-dependent pressure gradient. J. Non-Newtonian Fluid Mech. 162, 54–77 (2009)

    Article  MATH  Google Scholar 

  • Mendiburu, A.A., Carrocci, L.R., Carvalho, J.A.: Analytical solutions for transient one-dimensional Couette flow considering constant and time-dependent pressure gradients. Engenharia Térmica (Thermal Engineering). 8, 92–98 (2009)

    Google Scholar 

  • Womersley, J.R.: Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127, 553–563 (1995)

    Article  Google Scholar 

  • Uchida, S.: The pulsating viscous flow superposed on the steady laminar motion of incompressible fluid in a circular pipe. J Appl Math. 7, 403–422 (1956)

    MathSciNet  MATH  Google Scholar 

  • Nowruzi, H., Nourazar, S.S., Ghassemi, H.: Two semi-analytical methods applied to hydrodynamic stability of dean flow. J. Appl. Fluid Mech. 11(5), 1433–1444 (2018)

    Google Scholar 

  • Manos, T., Marinakis, G., Tsangaris, S.: Oscillating viscoelastic flow in a curved duct-exact analytical and numerical solution. J. Non-Newtonian Fluid Mech. 135, 8–15 (2006)

    Article  MATH  Google Scholar 

  • Mishra, S.P., Roy, J.S.: Flow of elastico-viscous liquid between rotating cylinders with suction and injection. Phys. Fluids 11(10), 2074–2081 (1968). https://doi.org/10.1063/1.1691786

    Article  MATH  Google Scholar 

  • Yang, T., Wang, L.: Solution structure and stability of viscous flow in curved square ducts. ASME J. Fluids Eng. 123, 863–868 (2001)

    Article  Google Scholar 

  • Hoque, M.M., Alam, M.M.: Effects of Dean Number and curvature on fluid flow through a curved pipe with magnetic field. Procedia Eng. 56, 245–253 (2013). https://doi.org/10.1016/j.proeng.2013.03.114

    Article  Google Scholar 

  • Mondal, R.N., Islam, M.Z., Perven, R.: Combined effects of centrifugal and coriolis instability of the flow through a rotating curved duct of small curvature. Procedia Eng. 90, 261–267 (2014). https://doi.org/10.1016/j.proeng.2014.11.847

    Article  Google Scholar 

  • Mondal, R.N., Islam, M.Z., Islam, M.M., Yanase, S.: Numerical study of unsteady heat and fluid flow through a curved rectangular duct of small aspect ratio. Thammasat Int. J. Sci. Technol. 20(4), 1–20 (2015)

    Google Scholar 

  • Islam, M.Z., Arifuzzaman, M., Mondal, R.N.: Numerical study of unsteady fluid flow and heat transfer through a rotating curved rectangular channel. GANIT J. Bangladesh Math. Soc. 37, 73 (2018). https://doi.org/10.3329/ganit.v37i0.35727

    Article  MathSciNet  Google Scholar 

  • Sayed-Ahmed, M.E., Attia, H.A., Ewis, K.M.: Time dependent pressure gradient effect on unsteady MHD couette flow and heat transfer of a Casson fluid. Engineering 3, 38–49 (2010)

    Article  Google Scholar 

  • Azad, M.A.K., Andallah, L.S.: Explicit exponential finite difference scheme for 1D Navier-Stokes equation with time dependent pressure gradient. J. Bangladesh Math. Soc. 36, 79–90 (2016)

    Article  MathSciNet  Google Scholar 

  • Jha, B.K., Yusuf, T.S.: Transient pressure driven flow in an annulus partially filled with porous material: azimuthal pressure gradient. Math. Modell. Eng. Problems 5(3), 260–267 (2018)

    Article  Google Scholar 

  • Jha, B.K., Yahaya, J.D.: Transient Dean flow in an annulus: a semi-analytical approach. J. Taibah Univ. Sci. 13(1), 169–176 (2018)

    Article  Google Scholar 

  • Jha, B.K., Yahaya, J.D.: Transient Dean flow in a channel with suction/injection: a semi-analytical approach. J. Process Mech. Eng. 233(5), 1–9 (2019)

    Article  Google Scholar 

  • Mondal, R.N., Islam, M.Z., Islam, M.S.: Transient heat and fluid flow through a rotating curved rectangular duct: the case of positive and negative rotation. Procedia Eng. 56, 179–186 (2013)

    Article  Google Scholar 

  • Islam, M.Z., Mondal, R.N., Rashidi, M.: Dean-Taylor flow with convective heat transfer through a coiled duct. Comput. Fluids 149, 41–55 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Tzou, D.Y.: Macro to Microscale Heat Transfer: The Lagging Behavior. Taylor and Francis, London (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dauda Gambo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, B.K., Gambo, D. Combined effects of suction/injection and exponentially decaying/growing time-dependent pressure gradient on unsteady Dean flow: a semi-analytical approach. Int J Geomath 11, 28 (2020). https://doi.org/10.1007/s13137-020-00164-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13137-020-00164-w

Keywords

Mathematics Subject Classification

Navigation