Skip to main content

Advertisement

Log in

Argan Cake Oil Transesterification Kinetics and an Optimized Choice of a High-Performance Catalyst for Biodiesel Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In Morocco, the production of argan oil generates a natural organic residue available at a low cost, which is known as argan cake. It shows potential as a biodiesel resource due to its substantial oil residue content. A kinetic study of transesterification was conducted to evaluate the potential of argan cake oil (ACO) in producing biodiesel. The obtained activation energy is equal to Ea = 30.85 kJ/mol, and the reaction rate falls within the range of 0.0121 to 0.0241 min−1 at temperatures between 40 and 60 °C. Realizing that the catalyst type has a significant impact on the reaction kinetics, a comparison was made between homogeneous, heterogeneous, and enzymatic catalysts using the multi-criteria decision-making (MCDM) method. This method was employed to select the catalyst that maximizes biodiesel yield while minimizing cost and environmental impact. Five catalyst types were studied: homogeneous acid and basic catalysts, heterogeneous acid and basic catalysts, and enzymatic catalysts. In the classification process, eight criteria were considered: catalyst sensitivity to free fatty acid (FFA) and water in the raw material, biodiesel yield, reaction rate, glycerol recovery, catalyst recovery and recycling, energy cost, catalyst cost, and environmental impact. The results from the Fuzzy Technique for Order of Preference by Similarity to the Ideal Solution (FTOPSIS) showed that the basic heterogeneous catalyst outperforms the other four examined catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Kamzon, M.A., Abderafi, S., Bounahmidi, T.: Promising bioethanol processes for developing a biorefinery in the Moroccan sugar industry. Int. J. Hydrog. Energy 41, 20880–20896 (2016). https://doi.org/10.1016/j.ijhydene.2016.07.035

    Article  Google Scholar 

  2. El-kourdi, S., Aboudaoud, S., Abderafi, S., Cheddadi, A.: Potential assessment of combustible municipal wastes in Morocco and their ability to produce bio-oil by pyrolysis. Mater. Sci. Forum 1073, 149–154 (2022). https://doi.org/10.4028/p-2gg5xu

    Article  Google Scholar 

  3. Bhutto, A.W., Qureshi, K., Abro, R., Harijan, K., Zhao, Z., Bazmi, A.A., Abbas, T., Yu, G.: Progress in the production of biomass-to-liquid biofuels to decarbonize the transport sector–prospects and challenges. RSC Adv. 6, 32140–32170 (2016). https://doi.org/10.1039/C5RA26459F

    Article  Google Scholar 

  4. Tgarguifa, A., Abderafi, S., Bounahmidi, T.: Energy efficiency improvement of a bioethanol distillery, by replacing a rectifying column with a pervaporation unit. Renew. Energy 122, 239–250 (2018). https://doi.org/10.1016/j.renene.2018.01.112

    Article  Google Scholar 

  5. Mohammed, Y.S., Mustafa, M.W., Bashir, N.: Status of renewable energy consumption and developmental challenges in Sub-Sahara Africa. Renew. Sustain. Energy Rev. 27, 453–463 (2013). https://doi.org/10.1016/j.rser.2013.06.044

    Article  Google Scholar 

  6. Chen, H., Fu, X.: Industrial technologies for bioethanol production from lignocellulosic biomass. Renew. Sustain. Energy Rev. 57, 468–478 (2016). https://doi.org/10.1016/j.rser.2015.12.069

    Article  Google Scholar 

  7. Subbarayan, M.R., Senthil Kumaar, J.S., Anantha Padmanaban, M.R.: Experimental investigation of evaporation rate and exhaust emissions of diesel engine fuelled with cotton seed methyl ester and its blend with petro-diesel. Transp. Res. Part Transp. Environ. 48, 369–377 (2016). https://doi.org/10.1016/j.trd.2016.08.024

    Article  Google Scholar 

  8. Yusuf, N.N.A.N., Kamarudin, S.K., Yaakub, Z.: Overview on the current trends in biodiesel production. Energy Convers. Manag. 52, 2741–2751 (2011). https://doi.org/10.1016/j.enconman.2010.12.004

    Article  Google Scholar 

  9. Leung, D.Y.C., Wu, X., Leung, M.K.H.: A review on biodiesel production using catalyzed transesterification. Appl. Energy 87, 1083–1095 (2010). https://doi.org/10.1016/j.apenergy.2009.10.006

    Article  Google Scholar 

  10. Ahmed, T., Souad, A., Tijani, B.: Energetic byproducts of sugar industry. Int. Conf. Compos. Mater. Renew. Energy Appl. (ICCMREA) (2014). https://doi.org/10.1109/ICCMREA.2014.6843787

    Article  Google Scholar 

  11. Aboudaoud, S., El Kourdi, S., Abderafi, S., Abbassi, M.A.: Municipal solid waste generation from Morocco and Tunisia, and their possible energetic valorization. Int. Renew. Sustain. Energy Conf. (IRSEC) (2021). https://doi.org/10.1109/IRSEC53969.2021.9741166

    Article  Google Scholar 

  12. Zeghlouli, J., Guendouz, A., Duchez, D., El Modafar, C., Michaud, P., Delattre, C.: Valorization of co-products generated by argan oil extraction process: application to biodiesel production. Biofuels (2021). https://doi.org/10.1080/17597269.2021.1941573

    Article  Google Scholar 

  13. Chakib, A.: Rapport final de mission Projet de recherche filière Argan, Programme Gouvernance des Entreprises et Organisations du Développement Durable. (2013)

  14. González-Fernández, M.J., Manzano-Agugliaro, F., Zapata-Sierra, A., Belarbi, E.H., Guil-Guerrero, J.L.: Green argan oil extraction from roasted and unroasted seeds by using various polarity solvents allowed by the EU legislation. J. Clean. Prod. 276, 123081 (2020). https://doi.org/10.1016/j.jclepro.2020.123081

    Article  Google Scholar 

  15. Folayan, A.J., Anawe, P.A.L.: Synthesis and characterization of Argania spinosa (Argan oil) biodiesel by sodium hydroxide catalyzed transesterification reaction as alternative for petro-diesel in direct injection, compression ignition engines. Heliyon 5, e02427 (2019). https://doi.org/10.1016/j.heliyon.2019.e02427

    Article  Google Scholar 

  16. Kara, K., Ouanji, F., El Mahi, M., Lotfi, E.M., Kacimi, M., Mahfoud, Z.: Biodiesel synthesis from vegetable oil using eggshell waste as a heterogeneous catalyst. Biofuels 12, 1083–1089 (2021). https://doi.org/10.1080/17597269.2019.1580972

    Article  Google Scholar 

  17. Etim, A.O., Musonge, P., Eloka-Eboka, A.C.: A green process synthesis of bio-composite heterogeneous catalyst for the transesterification of linseed-marula bi-oil methyl ester. Results Eng. 16, 100645 (2022). https://doi.org/10.1016/j.rineng.2022.100645

    Article  Google Scholar 

  18. Simbi, I., Aigbe, U.O., Oyekola, O., Osibote, O.A.: Optimization of biodiesel produced from waste sunflower cooking oil over bi-functional catalyst. Results Eng. 13, 100374 (2022). https://doi.org/10.1016/j.rineng.2022.100374

    Article  Google Scholar 

  19. Xie, W., Gao, C., Li, J.: Sustainable biodiesel production from low-quantity oils utilizing H6PV3MoW8O40 supported on magnetic Fe3O4/ZIF-8 composites. Renew. Energy 168, 927–937 (2021). https://doi.org/10.1016/j.renene.2020.12.129

    Article  Google Scholar 

  20. Mostafa, F., Nourozi, L., Zakarianezhad, M.: Preparation and characterization of magnetic CsH2PW12O40/Fe–SiO2 nanocatalysts for biodiesel production. Mater. Res. Bull. 60, 412–420 (2014). https://doi.org/10.1016/j.materresbull.2014.09.005

    Article  Google Scholar 

  21. Georgogianni, K.G., Kontominas, M.G., Pomonis, P.J., Avlonitis, D., Gergis, V.: Conventional and in situ transesterification of sunflower seed oil for the production of biodiesel. Fuel Process. Technol. 89, 503–509 (2008). https://doi.org/10.1016/j.fuproc.2007.10.004

    Article  Google Scholar 

  22. El Kourdi, S., Aboudaoud, S., Abderafi, S., Cheddadi, A., Ammar, A.M.: Pyrolysis technology choice to produce bio-oil, from municipal solid waste, using multi-criteria decision-making methods. Waste Biomass Valoriz. (2023). https://doi.org/10.1007/s12649-023-02076-w

    Article  Google Scholar 

  23. Ourya, I., Abderafi, S.: Clean technology selection of hydrogen production on an industrial scale in Morocco. Results Eng. 17, 100815 (2023). https://doi.org/10.1016/j.rineng.2022.100815

    Article  Google Scholar 

  24. Folayan, A.J., Anawe, P.A.L., Aladejare, A.E., Ayeni, A.O.: Experimental investigation of the effect of fatty acids configuration, chain length, branching and degree of unsaturation on biodiesel fuel properties obtained from lauric oils, high-oleic and high-linoleic vegetable oil biomass. Energy Rep. 5, 793–806 (2019). https://doi.org/10.1016/j.egyr.2019.06.013

    Article  Google Scholar 

  25. Lima, A.C.C.: Evaluation of alkaline ionic liquids for catalysis of biodiesel from cooking oil. https://search.proquest.com/openview/202cfb41a6f4d78aaedad53234c29793/1?pq-origsite=gscholar&cbl=2026366&diss=y. (2018)

  26. Paul, A.A.L., Adewale, F.J.: Data on optimization of production parameters on Persea Americana (Avocado) plant oil biodiesel yield and quality. Data Brief 20, 855–863 (2018). https://doi.org/10.1016/j.dib.2018.08.064

    Article  Google Scholar 

  27. Suthar, K., Dwivedi, A., Joshipura, M.: A review on separation and purification techniques for biodiesel production with special emphasis on Jatropha oil as a feedstock. Asia-Pac. J. Chem. Eng. 14, e2361 (2019). https://doi.org/10.1002/apj.2361

    Article  Google Scholar 

  28. Salamatinia, B., Abdullah, A.Z., Bhatia, S.: Quality evaluation of biodiesel produced through ultrasound-assisted heterogeneous catalytic system. Fuel Process. Technol. 97, 1–8 (2012). https://doi.org/10.1016/j.fuproc.2012.01.003

    Article  Google Scholar 

  29. Yan, Y., Li, X., Wang, G., Gui, X., Li, G., Su, F., Wang, X., Liu, T.: Biotechnological preparation of biodiesel and its high-valued derivatives: a review. Appl. Energy 113, 1614–1631 (2014). https://doi.org/10.1016/j.apenergy.2013.09.029

    Article  Google Scholar 

  30. Anawe, P.A.L., Adewale, F.J.: Data on physico-chemical, performance, combustion and emission characteristics of Persea Americana Biodiesel and its blends on direct-injection, compression-ignition engines. Data Brief 21, 1533–1540 (2018). https://doi.org/10.1016/j.dib.2018.10.166

    Article  Google Scholar 

  31. Kusdiana, D., Saka, S.: Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel 80, 693–698 (2001). https://doi.org/10.1016/S0016-2361(00)00140-X

    Article  Google Scholar 

  32. Asri, N.P., Budikarjono, K., Suprapto, S., Roesyadi, A.: Kinetics of palm oil transesterification using double promoted catalyst CaO/KI/γ-Al2O3. J. Eng. Technol. Sci. 47, 353–363 (2015). https://doi.org/10.5614/j.eng.technol.sci.2015.47.4.1

    Article  Google Scholar 

  33. Teo, S.H., Islam, A., Masoumi, H.R.F., Taufiq-Yap, Y.H., Janaun, J., Chan, E.-S., Khaleque, M.A.: Effective synthesis of biodiesel from Jatropha curcas oil using betaine assisted nanoparticle heterogeneous catalyst from eggshell of Gallus domesticus. Renew. Energy 111, 892–905 (2017). https://doi.org/10.1016/j.renene.2017.04.039

    Article  Google Scholar 

  34. Zhang, Y., Li, Y., Zhang, X., Tan, T.: Biodiesel production by direct transesterification of microalgal biomass with co-solvent. Bioresour. Technol. 196, 712–715 (2015). https://doi.org/10.1016/j.biortech.2015.07.052

    Article  Google Scholar 

  35. Talebian-Kiakalaieh, A., Amin, N.A.S., Zarei, A., Noshadi, I.: Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: Optimization and kinetic model. Appl. Energy 102, 283–292 (2013). https://doi.org/10.1016/j.apenergy.2012.07.018

    Article  Google Scholar 

  36. Wu, X., Qiang, X., Liu, D., Yu, L., Wang, X.: An eco-friendly tanning process to wet-white leather based on amino acids. J. Clean. Prod. 270, 122399 (2020). https://doi.org/10.1016/j.jclepro.2020.122399

    Article  Google Scholar 

  37. Seyfi-Shishavan, S.A., Gündoğdu, F.K., Farrokhizadeh, E.: An assessment of the banking industry performance based on Intuitionistic fuzzy Best-Worst Method and fuzzy inference system. Appl. Soft Comput. 113, 107990 (2021). https://doi.org/10.1016/j.asoc.2021.107990

    Article  Google Scholar 

  38. Jain, N., Singh, A.R.: Sustainable supplier selection under must-be criteria through Fuzzy inference system. J. Clean. Prod. 248, 119275 (2020). https://doi.org/10.1016/j.jclepro.2019.119275

    Article  Google Scholar 

  39. Patil, P., Gude, V.G., Pinappu, S., Deng, S.: Transesterification kinetics of Camelina sativa oil on metal oxide catalysts under conventional and microwave heating conditions. Chem. Eng. J. 168, 1296–1300 (2011). https://doi.org/10.1016/j.cej.2011.02.030

    Article  Google Scholar 

  40. Rao, R.V., Patel, B.K.: A subjective and objective integrated multiple attribute decision making method for material selection. Mater. Des. 31, 4738–4747 (2010). https://doi.org/10.1016/j.matdes.2010.05.014

    Article  Google Scholar 

  41. Chen, C.-T.: Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst. 114, 1–9 (2000). https://doi.org/10.1016/S0165-0114(97)00377-1

    Article  Google Scholar 

  42. Alao, M.A., Ayodele, T.R., Ogunjuyigbe, A.S.O., Popoola, O.M.: Multi-criteria decision based waste to energy technology selection using entropy-weighted TOPSIS technique: the case study of Lagos. Nigeria. Energy. 201, 117675 (2020). https://doi.org/10.1016/j.energy.2020.117675

    Article  Google Scholar 

  43. da Silva, D.J.C., Schaefer, J.L., Baierle, I.C., da Veiga, C.P., Júnior, A.N.: Proposition of the waste management model. Resour. Conserv. Recycl. Adv. 15, 200114 (2022). https://doi.org/10.1016/j.rcradv.2022.200114

    Article  Google Scholar 

  44. Hidalgo, P., Toro, C., Ciudad, G., Navia, R.: Advances in direct transesterification of microalgal biomass for biodiesel production. Rev. Environ. Sci. Biotechnol. 12, 179–199 (2013). https://doi.org/10.1007/s11157-013-9308-0

    Article  Google Scholar 

  45. Veny, H., Aroua, M.K., Sulaiman, N.M.N.: Kinetic study of lipase catalyzed transesterification of jatropha oil in circulated batch packed bed reactor. Chem. Eng. J. 237, 123–130 (2014). https://doi.org/10.1016/j.cej.2013.10.010

    Article  Google Scholar 

  46. Wu, L., Huang, K., Wei, T., Lin, Z., Zou, Y., Tong, Z.: Process intensification of NaOH-catalyzed transesterification for biodiesel production by the use of bentonite and co-solvent (diethyl ether). Fuel 186, 597–604 (2016). https://doi.org/10.1016/j.fuel.2016.08.106

    Article  Google Scholar 

  47. Wu, L., Wei, T., Lin, Z., Zou, Y., Tong, Z., Sun, J.: Bentonite-enhanced biodiesel production by NaOH-catalyzed transesterification: Process optimization and kinetics and thermodynamic analysis. Fuel 182, 920–927 (2016). https://doi.org/10.1016/j.fuel.2016.05.065

    Article  Google Scholar 

  48. Cahyo Kumoro, A., Saeed, M.T.M.N.: Ultrasound-assisted transesterification of tropical goat fat: palm oil blend for biodiesel synthesis. Energy Convers. Manag. X 14, 1213 (2022). https://doi.org/10.1016/j.ecmx.2022.100213

    Article  Google Scholar 

  49. Wang, L., He, H., Xie, Z., Yang, J., Zhu, S.: Transesterification of the crude oil of rapeseed with NaOH in supercritical and subcritical methanol. Fuel Process. Technol. 88, 477–481 (2007). https://doi.org/10.1016/j.fuproc.2006.12.003

    Article  Google Scholar 

  50. Verma, P., Dwivedi, G., Sharma, M.P.: Comprehensive analysis on potential factors of ethanol in Karanja biodiesel production and its kinetic studies. Fuel 188, 586–594 (2017). https://doi.org/10.1016/j.fuel.2016.10.062

    Article  Google Scholar 

  51. Muthukumaran, C., Praniesh, R., Navamani, P., Swathi, R., Sharmila, G., Manoj Kumar, N.: Process optimization and kinetic modeling of biodiesel production using non-edible Madhuca indica oil. Fuel 195, 217–225 (2017). https://doi.org/10.1016/j.fuel.2017.01.060

    Article  Google Scholar 

  52. Akhabue, C.E., Okwundu, O.S.: Monitoring the transesterification reaction of castor oil and methanol by ultraviolet visible spectroscopy. Biofuels 10, 729–736 (2019). https://doi.org/10.1080/17597269.2017.1338128

    Article  Google Scholar 

  53. Oraegbunam, J.C., Oladipo, B., Falowo, O.A., Betiku, E.: Clean sandbox (Hura crepitans) oil methyl esters synthesis: a kinetic and thermodynamic study through pH monitoring approach. Renew. Energy 160, 526–537 (2020). https://doi.org/10.1016/j.renene.2020.06.124

    Article  Google Scholar 

  54. Encinar, J.M., González, J.F., Martínez, G., Nogales-Delgado, S.: Transesterification of Soybean oil through different homogeneous catalysts: kinetic study. Catalysts 12, 146 (2022). https://doi.org/10.3390/catal12020146

    Article  Google Scholar 

  55. Freedman, B., Butterfield, R.O., Pryde, E.H.: Transesterification kinetics of soybean oil 1. J. Am. Oil Chem. Soc. 63, 1375–1380 (1986). https://doi.org/10.1007/BF02679606

    Article  Google Scholar 

  56. Lopez, D., Goodwinjr, J., Bruce, D.: Transesterification of triacetin with methanol on Nafion® acid resins. J. Catal. 245, 381–391 (2007). https://doi.org/10.1016/j.jcat.2006.10.027

    Article  Google Scholar 

  57. Thinnakorn, K., Tscheikuna, J.: Biodiesel production via transesterification of palm olein using sodium phosphate as a heterogeneous catalyst. Appl. Catal. Gen. 476, 26–33 (2014). https://doi.org/10.1016/j.apcata.2014.02.016

    Article  Google Scholar 

  58. Gurunathan, B., Ravi, A.: Process optimization and kinetics of biodiesel production from neem oil using copper doped zinc oxide heterogeneous nanocatalyst. Bioresour. Technol. 190, 424–428 (2015). https://doi.org/10.1016/j.biortech.2015.04.101

    Article  Google Scholar 

  59. Baskar, G., Gurugulladevi, A., Nishanthini, T., Aiswarya, R., Tamilarasan, K.: Optimization and kinetics of biodiesel production from Mahua oil using manganese doped zinc oxide nanocatalyst. Renew. Energy 103, 641–646 (2017). https://doi.org/10.1016/j.renene.2016.10.077

    Article  Google Scholar 

  60. Feyzi, M., Shahbazi, Z.: Preparation, kinetic and thermodynamic studies of Al–Sr nanocatalysts for biodiesel production. J. Taiwan Inst. Chem. Eng. 71, 145–155 (2017). https://doi.org/10.1016/j.jtice.2016.11.023

    Article  Google Scholar 

  61. Kaur, N., Ali, A.: Kinetics and reusability of Zr/CaO as heterogeneous catalyst for the ethanolysis and methanolysis of Jatropha crucas oil. Fuel Process. Technol. 119, 173–184 (2014). https://doi.org/10.1016/j.fuproc.2013.11.002

    Article  Google Scholar 

  62. Vyas, A.P., Subrahmanyam, N., Patel, P.A.: Production of biodiesel through transesterification of Jatropha oil using KNO3/Al2O3 solid catalyst. Fuel 88, 625–628 (2009). https://doi.org/10.1016/j.fuel.2008.10.033

    Article  Google Scholar 

  63. Ho, W.W.S., Ng, H.K., Gan, S., Tan, S.H.: Evaluation of palm oil mill fly ash supported calcium oxide as a heterogeneous base catalyst in biodiesel synthesis from crude palm oil. Energy Convers. Manag. 88, 1167–1178 (2014). https://doi.org/10.1016/j.enconman.2014.03.061

    Article  Google Scholar 

  64. Krishnamurthy, K.N., Sridhara, S.N., Ananda Kumar, C.S.: Optimization and kinetic study of biodiesel production from Hydnocarpus wightiana oil and dairy waste scum using snail shell CaO nano catalyst. Renew. Energy 146, 280–296 (2020). https://doi.org/10.1016/j.renene.2019.06.161

    Article  Google Scholar 

  65. Ma, Y., Wang, Q., Sun, X., Wu, C., Gao, Z.: Kinetics studies of biodiesel production from waste cooking oil using FeCl3-modified resin as heterogeneous catalyst. Renew. Energy 107, 522–530 (2017). https://doi.org/10.1016/j.renene.2017.02.007

    Article  Google Scholar 

  66. Olagbende, O.H., Falowo, O.A., Latinwo, L.M., Betiku, E.: Esterification of Khaya senegalensis seed oil with a solid heterogeneous acid catalyst: modeling, optimization, kinetic and thermodynamic studies. Clean. Eng. Technol. 4, 100200 (2021). https://doi.org/10.1016/j.clet.2021.100200

    Article  Google Scholar 

  67. Marques Cardoso, C.M., Zavarize, D.G., Gama Vieira, G.E.: Transesterification of Pequi (Caryocar brasiliensis Camb.) bio-oil via heterogeneous acid catalysis: catalyst preparation, process optimization and kinetics. Ind. Crops Prod. 139, 1485 (2019). https://doi.org/10.1016/j.indcrop.2019.111485

    Article  Google Scholar 

  68. Konwar, L.J., Wärnå, J., Mäki-Arvela, P., Kumar, N., Mikkola, J.-P.: Reaction kinetics with catalyst deactivation in simultaneous esterification and transesterification of acid oils to biodiesel (FAME) over a mesoporous sulphonated carbon catalyst. Fuel 166, 1–11 (2016). https://doi.org/10.1016/j.fuel.2015.10.102

    Article  Google Scholar 

  69. Liu, Y., Yan, Y., Hu, F., Yao, A., Wang, Z., Wei, F.: Transesterification for biodiesel production catalyzed by combined lipases: optimization and kinetics. AIChE J. 56, 1659–1665 (2010). https://doi.org/10.1002/aic.12090

    Article  Google Scholar 

  70. Tran, D.-T., Chang, J.-S.: Kinetics of enzymatic transesterification and thermal deactivation using immobilized Burkholderia lipase as catalyst. Bioprocess Biosyst. Eng. 37, 481–491 (2014). https://doi.org/10.1007/s00449-013-1017-0

    Article  Google Scholar 

  71. Malani, R.S., Umriwad, S.B., Kumar, K., Goyal, A., Moholkar, V.S.: Ultrasound–assisted enzymatic biodiesel production using blended feedstock of non–edible oils: Kinetic analysis. Energy Convers. Manag. 188, 142–150 (2019). https://doi.org/10.1016/j.enconman.2019.03.052

    Article  Google Scholar 

  72. Mandari, V., Devarai, S.K.: Biodiesel production using homogeneous, heterogeneous, and enzyme catalysts via transesterification and esterification reactions: a critical review. Bioenergy Res. 15, 935–961 (2022). https://doi.org/10.1007/s12155-021-10333-w

    Article  Google Scholar 

  73. Dall’Oglio, E.L., de Sousa, P.T., Campos, D.C., Gomes de Vasconcelos, L., da Silva, A.C., Ribeiro, F., Rodrigues, V., Kuhnen, C.A.: Measurement of dielectric properties and microwave-assisted homogeneous acid-catalyzed transesterification in a Monomode reactor. J. Phys. Chem. A 119, 8971–8980 (2015). https://doi.org/10.1021/acs.jpca.5b04890

    Article  Google Scholar 

  74. Ruhul, A.M., Kalam, M.A., Masjuki, H.H., Fattah, I.M.R., Reham, S.S., Rashed, M.M.: State of the art of biodiesel production processes: a review of the heterogeneous catalyst. RSC Adv. 5, 101023–101044 (2015). https://doi.org/10.1039/C5RA09862A

    Article  Google Scholar 

  75. Jayakumar, M., Karmegam, N., Gundupalli, M.P., Bizuneh Gebeyehu, K., Tessema Asfaw, B., Chang, S.W., Ravindran, B., Kumar Awasthi, M.: Heterogeneous base catalysts: synthesis and application for biodiesel production—a review. Bioresour. Technol. 331, 125054 (2021). https://doi.org/10.1016/j.biortech.2021.125054

    Article  Google Scholar 

  76. Christopher, L.P., Hemanathan, K., Zambare, V.P.: Enzymatic biodiesel: challenges and opportunities. Appl. Energy 119, 497–520 (2014). https://doi.org/10.1016/j.apenergy.2014.01.017

    Article  Google Scholar 

  77. Saifuddin, N.M.: A review on processing technology for biodiesel production. Trends Appl. Sci. Res. 10, 1–37 (2015). https://doi.org/10.3923/tsar.2015.1.37

    Article  Google Scholar 

  78. Borges, M.E., Díaz, L.: Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: a review. Renew. Sustain. Energy Rev. 16, 2839–2849 (2012). https://doi.org/10.1016/j.rser.2012.01.071

    Article  Google Scholar 

  79. Khoobbakht, G., Kheiralipour, K., Yuan, W., Seifi, M.R., Karimi, M.: Desirability function approach for optimization of enzymatic transesterification catalyzed by lipase immobilized on mesoporous magnetic nanoparticles. Renew. Energy 158, 253–262 (2020). https://doi.org/10.1016/j.renene.2020.05.087

    Article  Google Scholar 

  80. Endalew, A.K., Kiros, Y., Zanzi, R.: Inorganic heterogeneous catalysts for biodiesel production from vegetable oils. Biomass Bioenergy 35, 3787–3809 (2011). https://doi.org/10.1016/j.biombioe.2011.06.011

    Article  Google Scholar 

  81. Nomanbhay, S., Ong, M.: A review of microwave-assisted reactions for biodiesel production. Bioengineering 4, 57 (2017). https://doi.org/10.3390/bioengineering4020057

    Article  Google Scholar 

  82. Basumatary, B., Basumatary, S., Das, B., Nath, B., Kalita, P.: Waste Musa paradisiaca plant: an efficient heterogeneous base catalyst for fast production of biodiesel. J. Clean. Prod. 305, 127089 (2021). https://doi.org/10.1016/j.jclepro.2021.127089

    Article  Google Scholar 

  83. Folayan, A.J., Anawe, P.A.L., Ayeni, A.O.: Synthesis and characterization of Salicornia bigelovii and Salicornia brachiata halophytic plants oil extracted by supercritical CO 2 modified with ethanol for biodiesel production via enzymatic transesterification reaction using immobilized Candida antarctica lipase catalyst in tert-butyl alcohol (TBA) solvent. Cogent. Eng. 6, 1625847 (2019). https://doi.org/10.1080/23311916.2019.1625847

    Article  Google Scholar 

  84. Goodridge, W.: Sensitivity analysis using simple additive weighting method. Int. J. Intell. Syst. Appl. 8, 27–33 (2016). https://doi.org/10.5815/ijisa.2016.05.04

    Article  Google Scholar 

  85. Sakti La Ore, M., Wijaya, K., Trisunaryanti, W., Saputri, W.D., Heraldy, E., Yuwana, N.W., Hariani, P.L., Budiman, A., Sudiono, S.: The synthesis of SO4/ZrO2 and Zr/CaO catalysts via hydrothermal treatment and their application for conversion of low-grade coconut oil into biodiesel. J. Environ. Chem. Eng. 8, 1005 (2020). https://doi.org/10.1016/j.jece.2020.104205

    Article  Google Scholar 

  86. Lam, M.K., Lee, K.T., Mohamed, A.R.: Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review. Biotechnol. Adv. 28, 500–518 (2010). https://doi.org/10.1016/j.biotechadv.2010.03.002

    Article  Google Scholar 

  87. Taufiq-Yap, Y.H., Lee, H.V., Hussein, M.Z., Yunus, R.: Calcium-based mixed oxide catalysts for methanolysis of Jatropha curcas oil to biodiesel. Biomass Bioenergy 35, 827–834 (2011). https://doi.org/10.1016/j.biombioe.2010.11.011

    Article  Google Scholar 

  88. Marwaha, A., Dhir, A., Mahla, S.K., Mohapatra, S.K.: An overview of solid base heterogeneous catalysts for biodiesel production. Catal. Rev. 60, 594–628 (2018). https://doi.org/10.1080/01614940.2018.1494782

    Article  Google Scholar 

  89. Boey, P.-L., Maniam, G.P., Hamid, S.A.: Biodiesel production via transesterification of palm olein using waste mud crab (Scylla serrata) shell as a heterogeneous catalyst. Bioresour. Technol. 100, 6362–6368 (2009). https://doi.org/10.1016/j.biortech.2009.07.036

    Article  Google Scholar 

  90. Viriya-empikul, N., Krasae, P., Puttasawat, B., Yoosuk, B., Chollacoop, N., Faungnawakij, K.: Waste shells of mollusk and egg as biodiesel production catalysts. Bioresour. Technol. 101, 3765–3767 (2010). https://doi.org/10.1016/j.biortech.2009.12.079

    Article  Google Scholar 

  91. Lukić, I., Kesić, Ž, Zdujić, M., Skala, D.: Calcium diglyceroxide synthesized by mechanochemical treatment, its characterization and application as catalyst for fatty acid methyl esters production. Fuel 165, 159–165 (2016). https://doi.org/10.1016/j.fuel.2015.10.063

    Article  Google Scholar 

  92. Soares Dias, A.P., Puna, J., Gomes, J., Neiva Correia, M.J., Bordado, J.: Biodiesel production over lime. Catalytic contributions of bulk phases and surface Ca species formed during reaction. Renew. Energy 99, 622–630 (2016). https://doi.org/10.1016/j.renene.2016.07.033

    Article  Google Scholar 

  93. Catarino, M., Martins, S., Soares Dias, A.P., Costa Pereira, M.F., Gomes, J.: Calcium diglyceroxide as a catalyst for biodiesel production. J. Environ. Chem. Eng. 7, 103099 (2019). https://doi.org/10.1016/j.jece.2019.103099

    Article  Google Scholar 

  94. Kostić, M.D., Bazargan, A., Stamenković, O.S., Veljković, V.B., McKay, G.: Optimization and kinetics of sunflower oil methanolysis catalyzed by calcium oxide-based catalyst derived from palm kernel shell biochar. Fuel 163, 304–313 (2016). https://doi.org/10.1016/j.fuel.2015.09.042

    Article  Google Scholar 

  95. Zhang, P., Han, Q., Fan, M., Jiang, P.: A novel waste water scale-derived solid base catalyst for biodiesel production. Fuel 124, 66–72 (2014). https://doi.org/10.1016/j.fuel.2014.01.091

    Article  Google Scholar 

  96. Obadiah, A., Swaroopa, G.A., Kumar, S.V., Jeganathan, K.R., Ramasubbu, A.: Biodiesel production from Palm oil using calcined waste animal bone as catalyst. Bioresour. Technol. 116, 512–516 (2012). https://doi.org/10.1016/j.biortech.2012.03.112

    Article  Google Scholar 

Download references

Acknowledgements

This study was performed within the framework of a research project funded by the Ministry of National Education, Vocational Training, Higher Education and Scientific Research (Morocco) / Department of Higher Education and Scientific Research (MENFPESRS/DESRS). The authors would like to thank MENFPESRS/DESRS for the financial support.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naima Bahani.

Ethics declarations

Conflict of Interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahani, N., El Kourdi, S. & Abderafi, S. Argan Cake Oil Transesterification Kinetics and an Optimized Choice of a High-Performance Catalyst for Biodiesel Production. Waste Biomass Valor 15, 2591–2610 (2024). https://doi.org/10.1007/s12649-023-02315-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02315-0

Keywords

Navigation