Skip to main content
Log in

Evaluation of the Water Repellency and Structure of Cellulose Nanofibers Derived from Waste Hop Stems Using a Fluoroalkyl Silane Coupling Treatment

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Fluorinated octyl silane-modified cellulose nanofibers (FOTS-CNF) were successfully prepared from 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized CNFs (TOCNFs) derived from agricultural waste hop stems. The surface structures of the FOTS-modified CNFs were site-specifically investigated by 13C/19F/29Si solid-state nuclear magnetic resonance and Fourier-transform infrared spectroscopy. The spectroscopic results indicated that siloxane layers with fluorinated octyl chains extensively covered on the hydrophilic surface of the TOCNFs. This hydrophobic surface coating exhibited the highest water contact angle of 126.9°.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Jonoobi, M., Oladi, R., Davoudpour, Y., Oksman, K., Dufresne, A., Hamzeh, Y., Davoodi, R.: Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22, 935–969 (2015). https://doi.org/10.1007/S10570-015-0551-0

    Article  Google Scholar 

  2. Isogai, A., Saito, T., Fukuzumi, H.: TEMPO-oxidized cellulose nanofibers. Nanoscale 3, 71–85 (2011). https://doi.org/10.1039/c0nr00583e

    Article  Google Scholar 

  3. Jiménez Saelices, C., Capron, I.: Design of Pickering micro- and nanoemulsions based on the structural characteristics of nanocelluloses. Biomacromolecules 19, 460–469 (2018). https://doi.org/10.1021/acs.biomac.7b01564

    Article  Google Scholar 

  4. Lu, Y., Han, J., Ding, Q., Yue, Y., Xia, C., Ge, S., Le, Q.V., Dou, X., Sonne, C., Lam, S.S.: TEMPO-oxidized cellulose nanofibers/polyacrylamide hybrid hydrogel with intrinsic self-recovery and shape memory properties. Cellulose 28, 1469–1488 (2021). https://doi.org/10.1007/s10570-020-03606-8

    Article  Google Scholar 

  5. Abdelmouleh, M., Boufi, S., Belgacem, M.N., Duarte, A.P., Ben Salah, A., Gandini, A.: Modification of cellulosic fibres with functionalised silanes: development of surface properties. Int. J. Adhes. Adhes. 24, 43–54 (2004). https://doi.org/10.1016/S0143-7496(03)00099-X

    Article  Google Scholar 

  6. Robles, E., Fernández-Rodríguez, J., Barbosa, A.M., Gordobil, O., Carreño, N.L.V., Labidi, J.: Production of cellulose nanoparticles from blue agave waste treated with environmentally friendly processes. Carbohydr. Polym. 183, 294–302 (2018). https://doi.org/10.1016/j.carbpol.2018.01.015

    Article  Google Scholar 

  7. Moon, R.J., Martini, A., Nairn, J., Simonsen, J., Youngblood, J.: Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40, 3941–3994 (2011). https://doi.org/10.1039/c0cs00108b

    Article  Google Scholar 

  8. Jonoobi, M., Harun, J., Mathew, A.P., Hussein, M.Z.B., Oksman, K.: Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17, 299–307 (2010). https://doi.org/10.1007/s10570-009-9387-9

    Article  Google Scholar 

  9. Reshmy, R., Philip, E., Madhavan, A., Pugazhendhi, A., Sindhu, R., Sirohi, R., Awasthi, M.K., Pandey, A., Binod, P.: Nanocellulose as green material for remediation of hazardous heavy metal contaminants. J. Hazard. Mater. 424, 127516 (2022). https://doi.org/10.1016/j.jhazmat.2021.127516

    Article  Google Scholar 

  10. Yamato, K., Yoshida, Y., Kumamoto, Y., Isogai, A.: Surface modification of TEMPO-oxidized cellulose nanofibers, and properties of their acrylate and epoxy resin composite films. Cellulose 29, 2839–2853 (2022). https://doi.org/10.1007/s10570-021-04131-y

    Article  Google Scholar 

  11. Xie, Y., Hill, C.A.S., Xiao, Z., Militz, H., Mai, C.: Silane coupling agents used for natural fiber/polymer composites: a review. Compos. Part A Appl. Sci. Manuf. 41, 806–819 (2010). https://doi.org/10.1016/j.compositesa.2010.03.005

    Article  Google Scholar 

  12. Gkaliou, K., Daugaard, A.E.: Silane and silazane surface modification of recycled glass fibers for polypropylene composites. J. Appl. Polym. Sci. 140, 5 (2022). https://doi.org/10.1002/app.53388

    Article  Google Scholar 

  13. Wood, W., Kumar, S., Zhong, W.H.: Synthesis of organosilane-modified carbon nanofibers and influence of silane coating thickness on the performance of polyethylene nanocomposites. Macromol. Mater. Eng. 295, 1125–1135 (2010). https://doi.org/10.1002/mame.201000226

    Article  Google Scholar 

  14. Nayak, L., Rahaman, M., Giri, R.: Surface modification/functionalization of carbon materials by different techniques: an overview. Polym. Compos. Mater. (2019). https://doi.org/10.1007/978-981-13-2688-2_2

    Article  Google Scholar 

  15. Saedi, S., Garcia, C.V., Kim, J.T., Shin, G.H.: Physical and chemical modifications of cellulose fibers for food packaging applications. Cellulose 28, 8877–8897 (2021). https://doi.org/10.1007/s10570-021-04086-0

    Article  Google Scholar 

  16. Rachini, A., le Troedec, M., Peyratout, C., Smith, A.: Chemical modification of hemp fibers by silane coupling agents. J. Appl. Polym. Sci. 123, 601–610 (2012). https://doi.org/10.1002/app.34530

    Article  Google Scholar 

  17. Abdelmouleh, M., Boufi, S., Ben Salah, A., Belgacem, M.N., Gandini, A.: Interaction of silane coupling agents with cellulose. Langmuir 18, 3203–3208 (2002). https://doi.org/10.1021/la011657g

    Article  Google Scholar 

  18. Hongrattanavichit, I., Aht-Ong, D.: Antibacterial and water-repellent cotton fabric coated with organosilane-modified cellulose nanofibers. Ind. Crops Prod. 171, 113858 (2021). https://doi.org/10.1016/j.indcrop.2021.113858

    Article  Google Scholar 

  19. Kono, K., Uno, T., Tsujisaki, H., Anai, H., Kishimoto, R., Matsushima, T., Tajima, K.: Nanofibrillated bacterial cellulose surface modified with methyltrimethoxysilane for fiber-reinforced composites. Appl. Nano Mater. 3, 8232–8241 (2020). https://doi.org/10.1021/acsanm.0c01670

    Article  Google Scholar 

  20. Saini, S., Belgacem, M.N., Bras, J.: Effect of variable aminoalkyl chains on chemical grafting of cellulose nanofiber and their antimicrobial activity. Mater. Sci. Eng. C 75, 760–768 (2017). https://doi.org/10.1016/j.msec.2017.02.062

    Article  Google Scholar 

  21. Hokkanen, S., Repo, E., Suopajärvi, T., Liimatainen, H., Niinimaa, J., Sillanpää, M.: Adsorption of Ni(II), Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose 21, 1471–1487 (2014). https://doi.org/10.1007/s10570-014-0240-4

    Article  Google Scholar 

  22. Yoshino, N., Yamamoto, Y., Hamano, K., Kawase, T.: Syntheses and reactions of metal organics. XVIII. Synetheses of (1H,1H,2H,2H-polyfluoroalkyl)trimethoxysilanes and surface modification of glass plate. Bull. Chem. Soc. Jpn. 66, 1754–1758 (1993). https://doi.org/10.1246/bcsj.66.1754

    Article  Google Scholar 

  23. Chen, W., Karde, V., Cheng, T.N.H., Ramil, S.S., Heng, J.Y.Y.: Surface hydrophobicity: effect of alkyl chain length and network homogeneity. Front. Chem. Sci. Eng. 15, 90–98 (2021). https://doi.org/10.1007/s11705-020-2003-0

    Article  Google Scholar 

  24. Kota, A.K., Kwon, G., Tuteja, A.: The design and applications of superomniphobic surfaces. NPG Asia Mater. 6, e109 (2014). https://doi.org/10.1038/am.2014.34

    Article  Google Scholar 

  25. Owen, M.J., Williams, D.E.: Surface modification by fluoroalkyl-functional silanes: a review. J. Adhes. Sci. Technol. 5, 307–320 (1991). https://doi.org/10.1163/156856191X00378

    Article  Google Scholar 

  26. Min, X., Wang, Y.: Enhanced adsorption of short-chain perfluorobutanoic acid by functionalized periodic mesoporous organosilica: performance and mechanisms. J. Hazard. Mater. 449, 131047 (2023). https://doi.org/10.1016/j.jhazmat.2023.131047

    Article  Google Scholar 

  27. Xu, Z., Zhou, H., Jiang, X., Li, J., Huang, F.: Facile synthesis of reduced graphene oxide/trimethyl chlorosilane-coated cellulose nanofibres aerogel for oil absorption. IET Nanobiotechnol. 11, 929–934 (2017). https://doi.org/10.1049/iet-nbt.2017.0063

    Article  Google Scholar 

  28. Baidya, A., Ganayee, M.A., Jakka Ravindran, S., Tam, K.C., Das, S.K., Ras, R.H.A., Pradeep, T.: Organic solvent-free fabrication of durable and multifunctional superhydrophobic paper from waterborne fluorinated cellulose nanofiber building blocks. ACS Nano 11, 11091–11099 (2017). https://doi.org/10.1021/acsnano.7b05170

    Article  Google Scholar 

  29. Gu, L., Jiang, B., Song, J., Jin, Y., Xiao, H.: Effect of lignin on performance of lignocellulose nanofibrils for durable superhydrophobic surface. Cellulose 26, 933–944 (2019). https://doi.org/10.1007/s10570-018-2129-0

    Article  Google Scholar 

  30. Shi, C., Chen, Y., Yu, Z., Li, S., Chan, H., Sun, S., Chen, G., He, M., Tian, J.: Sustainable and superhydrophobic spent coffee ground-derived holocellulose nanofibers foam for continuous oil/water separation. Sustain. Mater. Technol. 28, e00277 (2021). https://doi.org/10.1016/j.susmat.2021.e00277

    Article  Google Scholar 

  31. Yang, Y., Zhao, X., Ye, L.: Facile construction of durable superhydrophobic cellulose paper for oil–water separation. Cellulose 30, 3255–3265 (2023). https://doi.org/10.1007/s10570-023-05074-2

    Article  Google Scholar 

  32. Abraham, E., Cherpak, V., Senyuk, B., ten Hove, J.B., Lee, T., Liu, Q., Smalyukh, I.I.: Highly transparent silanized cellulose aerogels for boosting energy efficiency of glazing in buildings. Nat. Energy 8, 381–396 (2023). https://doi.org/10.1038/s41560-023-01226-7

    Article  Google Scholar 

  33. Salon, M.C.B., Gerbaud, G., Abdelmouleh, M., Bruzzese, C., Boufi, S., Belgacem, M.N.: Studies of interactions between silane coupling agents and cellulose fibers with liquid and solid-state NMR. Magn. Reson. Chem. 45, 473–483 (2007). https://doi.org/10.1002/mrc.1994

    Article  Google Scholar 

  34. Salon, M.C.B., Abdelmouleh, M., Boufi, S., Belgacem, M.N., Gandini, A.: Silane adsorption onto cellulose fibers: hydrolysis and condensation reactions. J. Colloid Interface Sci. 289, 249–261 (2005). https://doi.org/10.1016/j.jcis.2005.03.070

    Article  Google Scholar 

  35. Atalla, R.H., Vanderhart, D.L.: The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl. Magn. Reson. 15, 1–19 (1999). https://doi.org/10.1016/S0926-2040(99)00042-9

    Article  Google Scholar 

  36. Witter, R., Sternberg, U., Hesse, S., Kondo, T., Koch, F.T., Ulrich, A.S.: 13C chemical shift constrained crystal structure refinement of cellulose Iα and its verification by NMR anisotropy experiments. Macromolecules 39, 6125–6132 (2006). https://doi.org/10.1021/ma052439n

    Article  Google Scholar 

  37. Patterson, G.D., Orts, W.J., McManus, J.D., Hsieh, Y.L.: Cellulose and lignocellulose nanofibrils and amphiphilic and wet-resilient aerogels with concurrent sugar extraction from almond hulls. ACS Agric. Sci. Technol. 3, 140–151 (2023). https://doi.org/10.1021/acsagscitech.2c00264

    Article  Google Scholar 

  38. Xu, X., Hsieh, Y.L.: Aqueous exfoliated graphene by amphiphilic nanocellulose and its application in moisture-responsive foldable actuators. Nanoscale 11, 11719–11729 (2019). https://doi.org/10.1039/c9nr01602c

    Article  Google Scholar 

  39. Khawas, P., Deka, S.C.: Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohydr. Polym. 137, 608–616 (2016). https://doi.org/10.1016/j.carbpol.2015.11.020

    Article  Google Scholar 

  40. Dai, H., Zhang, H., Chen, Y., Ma, L., Wu, J., Zhang, Y.: Co-stabilization and properties regulation of Pickering emulsions by cellulose nanocrystals and nanofibrils from lemon seeds. Food Hydrocoll. 120, 106884 (2021). https://doi.org/10.1016/j.foodhyd.2021.106884

    Article  Google Scholar 

  41. Li, X., Li, J., Kuang, Y., Guo, S., Mo, L., Ni, Y.: Stabilization of Pickering emulsions with cellulose nanofibers derived from oil palm fruit bunch. Cellulose 27, 839–851 (2020). https://doi.org/10.1007/s10570-019-02803-4

    Article  Google Scholar 

  42. Shahi, N., Min, B., Sapkota, B., Rangari, V.K.: Eco-friendly cellulose nanofiber extraction from sugarcane bagasse and film fabrication. Sustainability (2020). https://doi.org/10.3390/su12156015

    Article  Google Scholar 

  43. Kanai, N., Nishimura, K., Umetani, S., Saito, Y., Saito, H., Oyama, T., Kawamura, I.: Upcycling of waste hop stems into cellulose nanofibers: isolation and structural characterization. ACS Agric. Sci. Technol. 1, 347–354 (2021). https://doi.org/10.1021/acsagscitech.1c00041

    Article  Google Scholar 

  44. Kanai, N., Sakai, T., Yamada, K., Kumagai, S., Kawamura, I.: Using cellulose nanofibers isolated from waste hop stems to stabilize dodecane or olive oil-in-water Pickering emulsions. Colloids Surf. A 653, 129956 (2022). https://doi.org/10.1016/j.colsurfa.2022.129956

    Article  Google Scholar 

  45. Fillat, Ú., Wicklein, B., Martín-Sampedro, R., Ibarra, D., Ruiz-Hitzky, E., Valencia, C., Sarrión, A., Castro, E., Eugenio, M.E.: Assessing cellulose nanofiber production from olive tree pruning residue. Carbohydr. Polym. 179, 252–261 (2018). https://doi.org/10.1016/j.carbpol.2017.09.072

    Article  Google Scholar 

  46. Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., Johnson, D.K.: Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3, 10 (2010). https://doi.org/10.1186/1754-6834-3-10

    Article  Google Scholar 

  47. Park, S., Johnson, D.K., Ishizawa, C.I., Parilla, P.A., Davis, M.F.: Measuring the crystallinity index of cellulose by solid state 13C nuclear magnetic resonance. Cellulose 16, 641–647 (2009). https://doi.org/10.1007/s10570-009-9321-1

    Article  Google Scholar 

  48. Li, M., Tian, X., Jin, R., Li, D.: Preparation and characterization of nanocomposite films containing starch and cellulose nanofibers. Ind. Crops Prod. 123, 654–660 (2018). https://doi.org/10.1016/j.indcrop.2018.07.043

    Article  Google Scholar 

  49. Li, J., Zhai, S., Wu, W., Xu, Z.: Hydrophobic nanocellulose aerogels with high loading of metal-organic framework particles as floating and reusable oil absorbents. Front. Chem. Sci. Eng. 15, 1158–1168 (2021). https://doi.org/10.1007/s11705-020-2021-z

    Article  Google Scholar 

  50. Szabó, G., Szieberth, D., Nyulászi, L.: Theoretical study of the hydrolysis of chlorosilane. Struct. Chem. 26, 231–238 (2015). https://doi.org/10.1007/s11224-014-0543-y

    Article  Google Scholar 

  51. Cypryk, M.: Hydrolysis of fluorosilanes: a theoretical study. J. Phys. Chem. A 109, 12020–12026 (2005). https://doi.org/10.1021/jp054779g

    Article  Google Scholar 

  52. Pazokifard, S., Mirabedini, S.M., Esfandeh, M., Farrokhpay, S.: Fluoroalkylsilane treatment of TiO2 nanoparticles in difference pH values: characterization and mechanism. Adv. Powder Technol. 4, 428–436 (2012). https://doi.org/10.1016/j.apt.2012.02.006

    Article  Google Scholar 

  53. Britcher, L.G., Kehoe, D.C., Malisons, J.G., Swincer, A.G.: Siloxane coupling agents. Macromolecules 28, 3110–3118 (1995). https://doi.org/10.1021/ma00113a013

    Article  Google Scholar 

  54. Ilharco, L.M., Garcia, A.R., Lopes Da Silva, J., Ferreira, L.F.V.: Infrared approach to the study of adsorption on cellulose: influence of cellulose crystallinity on the adsorption of benzophenone. Langmuir 13, 4126–4132 (1997). https://doi.org/10.1021/la962138u

    Article  Google Scholar 

  55. Huang, C.F., Tu, C.W., Lee, R.H., Yang, C.H., Hung, W.C., Andrew Lin, K.Y.: Study of various diameter and functionality of TEMPO-oxidized cellulose nanofibers on paraquat adsorptions. Polym. Degrad. Stab. 161, 206–212 (2019). https://doi.org/10.1016/j.polymdegradstab.2019.01.023

    Article  Google Scholar 

  56. Lal, S.S., Mhaske, S.T.: TEMPO-oxidized cellulose nanofiber/kafirin protein thin film crosslinked by Maillard reaction. Cellulose 26, 6099–6118 (2019). https://doi.org/10.1007/s10570-019-02509-7

    Article  Google Scholar 

  57. Kallapa, P.J., Kalleshappa, P.G., Eshwarappa, B.B., Basavarajappa, S., Betageri, V.S., Devendra, B.K.: Synthesis of cellulose nanofibers from lignocellulosic materials and their photocatalytic dye degradation studies. Int. Nano Lett. (2023). https://doi.org/10.1007/s40089-023-00402-7

    Article  Google Scholar 

  58. Sun, X., Xu, W., Zhang, X., Lei, T., Lee, S.Y., Wu, Q.: ZIF-67@cellulose nanofiber hybrid membrane with controlled porosity for use as Li-ion battery separator. J. Energy Chem. 52, 170–180 (2021). https://doi.org/10.1016/j.jechem.2020.04.057

    Article  Google Scholar 

  59. Aminayi, P., Abidi, N.: Imparting super hydro/oleophobic properties to cotton fabric by means of molecular and nanoparticles vapor deposition methods. Appl. Surf. Sci. 287, 223–231 (2013). https://doi.org/10.1016/j.apsusc.2013.09.132

    Article  Google Scholar 

  60. Dhali, K., Daver, F., Cass, P., Adhikari, B.: Surface modification of the cellulose nanocrystals through vinyl silane grafting. Int. J. Biol. Macromol. 200, 397–408 (2022). https://doi.org/10.1016/j.ijbiomac.2022.01.079

    Article  Google Scholar 

  61. Zhou, F., Cheng, G., Jiang, B.: Effect of silane treatment on microstructure of sisal fibers. Appl. Surf. Sci. 292, 806–812 (2014). https://doi.org/10.1016/j.apsusc.2013.12.054

    Article  Google Scholar 

  62. Ramamoorthy, S.K., Skrifvars, M., Rissanen, M.: Effect of alkali and silane surface treatments on regenerated cellulose fibre type (Lyocell) intended for composites. Cellulose 22, 637–654 (2015). https://doi.org/10.1007/s10570-014-0526-6

    Article  Google Scholar 

  63. Boutevin, B., Guida-Pietrasanta, F., Ratsimihety, A., Caporiccio, G., Gornowicz, G.: Study of the alkylation of chlorosilanes. Part I. Synthesis of tetra(1H,1H,2H,2H-polyfluoroalkyl)silanes. J. Fluor. 60, 211–223 (1993). https://doi.org/10.1016/S0022-1139(00)80035-4

    Article  Google Scholar 

  64. Dua, S.S., Howells, R.D., Gilman, H.: Some perfluoroalkyl grignard reagents and their derivatives. J. Fluor. 4, 409–413 (1974). https://doi.org/10.1016/S0022-1139(00)85290-2

    Article  Google Scholar 

  65. Furó, I., Iliopoulos, I., Stilbs, P.: Structure and dynamics of associative water-soluble polymer aggregates as seen by 19F NMR spectroscopy. J. Phys. Chem. B 104, 485–494 (2000). https://doi.org/10.1021/jp9927404

    Article  Google Scholar 

  66. Labouriau, A., Cox, J.D., Schoonover, J.R., Patterson, B.M., Havrilla, G.J., Stephens, T., Taylor, D.: Mössbauer, NMR and ATR-FTIR spectroscopic investigation of degradation in RTV siloxane foams. Polym. Degrad. Stab. 92, 414–424 (2007). https://doi.org/10.1016/j.polymdegradstab.2006.11.017

    Article  Google Scholar 

  67. Ben Mabrouk, A., Salon, M.C.B., Magnin, A., Belgacem, M.N., Boufi, S.: Cellulose-based nanocomposites prepared via mini-emulsion polymerization: understanding the chemistry of the nanocellulose/matrix interface. Colloids Surf. A 448, 1–8 (2014). https://doi.org/10.1016/j.colsurfa.2014.01.077

    Article  Google Scholar 

  68. de Oliveira Taipina, M., Ferrarezi, M.M.F., Yoshida, I.V.P., do Carmo Gonçalves, M.: Surface modification of cotton nanocrystals with a silane agent. Cellulose 20, 217–226 (2013). https://doi.org/10.1007/s10570-012-9820-3

    Article  Google Scholar 

  69. Long, L.Y., Weng, Y., Wang, Y.: Cellulose aerogels: synthesis, applications, and prospects. Polymers 10, 623 (2018). https://doi.org/10.3390/polym10060623

    Article  Google Scholar 

  70. Takeshita, S., Ono, T.: Biopolymer-polysiloxane double network aerogels. Angew. Chem. Int. Ed. (2023). https://doi.org/10.1002/anie.202306518

    Article  Google Scholar 

Download references

Acknowledgements

Mr. Kosuke Nishimura and the Tono Ryokuho High School kindly provided the air-dried hop stems. We thank Mr. Shinji Ishihara of the Instrumental Analysis Center, Yokohama National University, for the technical assistance with the FTIR and SS-NMR spectroscopy.

Funding

This work was supported in part by JSPS KAKENHI (Grant Numbers JP21H05229, JP21J20591); JST COI-NEXT program (Grant Number JPMJPF2111); The Sumitomo Foundation (210760); and NEDO (Grant Number JPNP20004).

Author information

Authors and Affiliations

Authors

Contributions

KY, NK and IK wrote the manuscript. KY performed TEMPO-oxidized experiments of hop stems, and surface modification. KY performed FTIR. KY and IK performed all NMR experiments. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Izuru Kawamura.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Statement of novelty

Stems and leaves of hop (Humulus lupulus) accounting for approximately 75% of the biomass produced by hop cultivation are land-filled as agro-waste. In this work, fluorinated alkyl silane-modified cellulose nanofibers from waste hop stems were successfully prepared. Further, we found the relationship between the water-repellent function and the characteristic structure model. It provides the potential use of new biomass resources as hydrophobic materials.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5360 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, K., Kanai, N. & Kawamura, I. Evaluation of the Water Repellency and Structure of Cellulose Nanofibers Derived from Waste Hop Stems Using a Fluoroalkyl Silane Coupling Treatment. Waste Biomass Valor 15, 1541–1552 (2024). https://doi.org/10.1007/s12649-023-02254-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02254-w

Keywords

Navigation