Skip to main content
Log in

Efficacy of Biogenic Selenium Nanoparticles from Pseudomonas Libanesis Towards Growth Enhancement of Okra

  • OriginalPaper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Traditional farming has led to the implementation of synthetic fertilizers to compensate for the food demand globally. Macronutrients like N, P, and K are supplemented to the crop both naturally and chemically. Micronutrient such as selenium (Se) is needed for the physiological growth of the crop and the human system. Micronutrient Se is produced biologically and can be incorporated along with PGPR which serves as a macronutrient provider and is used as an eco-friendly nanobiofertiliser (Se + PGPR). A nanoparticle is feasible to use which has controlled release to the target (plant) to enrich and boost the crop quality and crop production thereby decreasing anthropogenic pollution. In the current study, we identified a multipotent selenium nanoparticle-producing bacterial strain–Pseudomonas libanesis which could also act as a micronutrient provider altogether works as an efficient nanobiofertiliser. Comparative analysis of biofertilizer with nanobiofertiliser was studied to assess the effectiveness of Okra. SEM analysis showed the average of selenium nanoparticles (SeNP) to be 93.31 nm. Further SeNP is characterized by FT-IR, XRD, and AFM. There was a 30–40% increase in germination percentage in Pot S3 when compared to the control. The present study also deals with the increased phytochemicals of 25–35% of okra, rise in shoot and root length by 25–35%, and increased production of the fruiting body with the implementation of 75 ppm of SeNP to avoid the bioaccumulation of SeNP in the soil environment. The Uptake of Se in the plant was estimated to be 80%. This study gives insight into biological SeNP along with PGPR which could act efficiently in improving soil quality and crop yield.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rabalao, T.M., Ndaba, B., Roopnarain, A., Vatsha, B.: Towards a circular economy: The influence of extraction methods on phytosynthesis of metallic nanoparticles and their impact on crop growth and protection. JSFA Rep. 2(5), 208–221 (2022)

    Article  Google Scholar 

  2. Zahedi, S.M., Karimi, M., Teixeira da Silva, J.A.: The use of nanotechnology to increase quality and yield of fruit crops. J. Sci. Food Agric. 100(1), 25–31 (2020)

    Article  Google Scholar 

  3. Kumar, A., Gupta, K., Dixit, S., Mishra, K., Srivastava, S.: A review on positive and negative impacts of nanotechnology in agriculture. Int. J. Environ. Sci. Technol. 16(4), 2175–2184 (2019)

    Article  Google Scholar 

  4. Zahedi, S.M., Hosseini, M.S., Daneshvar Hakimi Meybodi, N., Peijnenburg, W.: Mitigation of the effect of drought on growth and yield of pomegranates by foliar spraying of different sizes of selenium nanoparticles. J. Sci. Food Agri. 101(12), 5202–5213 (2021)

    Article  Google Scholar 

  5. Glick, B.R., Gamalero, E.: Recent developments in the study of plant microbiomes. Microorganisms 9(7), 1533 (2021)

    Article  Google Scholar 

  6. Ajijah, N., Fiodor, A., Pandey, A.K., Rana, A., Pranaw, K.: Plant growth-promoting bacteria (PGPB) with biofilm-forming ability: a multifaceted agent for sustainable agriculture. Diversity 15(1), 112 (2023)

    Article  Google Scholar 

  7. Lahlali, R., Ezrari, S., Radouane, N., Kenfaoui, J., Esmaeel, Q., El Hamss, H., Barka, E.A.: Biological control of plant pathogens: A global perspective. Microorganisms 10(3), 596 (2022)

    Article  Google Scholar 

  8. Zachara, B.A.: Selenium in complicated pregnancy. a review. Adv. Clin. Chem. 86, 157–178 (2018)

    Article  Google Scholar 

  9. Joshi, S.M., De Britto, S., Jogaiah, S., Ito, S.I.: Mycogenic selenium nanoparticles as potential new generation broad spectrum antifungal molecules. Biomolecules 9(9), 419 (2019)

    Article  Google Scholar 

  10. Steinbrenner, H., Speckmann, B., Klotz, L.O.: Selenoproteins: Antioxidant selenoenzymes and beyond. Arch. Biochem. Biophys. 595, 113–119 (2016)

    Article  Google Scholar 

  11. Kieliszek, M.: Selenium–fascinating microelement, properties and sources in food. Molecules 24(7), 1298 (2019)

    Article  Google Scholar 

  12. Gudkov, S.V., Shafeev, G.A., Glinushkin, A.P., Shkirin, A.V., Barmina, E.V., Rakov, I.I., Kalinitchenko, V.P.: Production and use of selenium nanoparticles as fertilizers. ACS Omega 5(28), 17767–17774 (2020)

    Article  Google Scholar 

  13. Ghaderi, R.S., Adibian, F., Sabouri, Z., Davoodi, J., Kazemi, M., Amel Jamehdar, S., Daroudi, M.: Green synthesis of selenium nanoparticle by Abelmoschus esculentus extract and assessment of its antibacterial activity. Mater. Technol. 37(10), 1289–1297 (2022)

    Article  Google Scholar 

  14. Hosseini Bafghi, M., Zarrinfar, H., Darroudi, M., Zargar, M., Nazari, R.: Green synthesis of selenium nanoparticles and evaluate their effect on the expression of ERG3, ERG11 and FKS1 antifungal resistance genes in Candida albicans and Candida glabrata. Lett. Appl. Microbiol. 74(5), 809–819 (2022)

    Article  Google Scholar 

  15. Nikam, P.B., Salunkhe, J.D., Minkina, T., Rajput, V.D., Kim, B.S., Patil, S.V.: A review on green synthesis and recent applications of red nano Selenium. Results Chem. (2022). https://doi.org/10.1016/j.rechem.2022.100581

    Article  Google Scholar 

  16. Acuña, J.J., Jorquera, M.A., Barra, P.J., Crowley, D.E., de la Luz Mora, M.: Selenobacteria selected from the rhizosphere as a potential tool for Se biofortification of wheat crops. Biol. Fertil. Soils 49(2), 175–185 (2013)

    Article  Google Scholar 

  17. Akçay, F.A., Avcı, A.: Effects of process conditions and yeast extract on the synthesis of selenium nanoparticles by a novel indigenous isolate Bacillus sp. EKT1 and characterization of nanoparticles. Arch. Microbiol. 202(8), 2233–2243 (2020)

    Article  Google Scholar 

  18. Ashengroph, M., Hosseini, S.-R.: A newly isolated Bacillus amyloliquefaciens SRB04 for the synthesis of selenium nanoparticles with potential antibacterial properties. Int. Microbiol. (2020). https://doi.org/10.1007/s10123-020-00147-9

    Article  Google Scholar 

  19. Sharma, K., Gupta, A., Kumar, M., Singh, M.K., Malik, S., Singh, B., Chaudhary, V.: Effect of Integrated Nutrient Management and Foliar Spray of Bioregulators on Growth and Yield of Okra. Int. J. Curr. Microbiol. Appl. Sci 9, 344–354 (2020)

    Article  Google Scholar 

  20. Elkhalifa, A.E.O., Alshammari, E., Adnan, M., Alcantara, J.C., Awadelkareem, A.M., Eltoum, N.E., Ashraf, S.A.: Okra (Abelmoschus Esculentus) as a potential dietary medicine with nutraceutical importance for sustainable health applications. Molecules 26(3), 696 (2021)

    Article  Google Scholar 

  21. Krentz, N.A., Gloyn, A.L.: Insights into pancreatic islet cell dysfunction from type 2 diabetes mellitus genetics. Nat. Rev. Endocrinol. 16(4), 202–212 (2020)

    Article  Google Scholar 

  22. Nguyen, N.H., Ta, Q.T.H., Pham, Q.T., Luong, T.N.H., Phung, V.T., Duong, T.H., Vo, V.G.: Anticancer activity of novel plant extracts and compounds from Adenosma bracteosum (Bonati) in human lung and liver cancer cells. Molecules 25(12), 2912 (2020)

    Article  Google Scholar 

  23. Kumar, S., Bhanjana, G., Sharma, A., Sidhu, M.C., Dilbaghi, N.: Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohyd. Polym. 101, 1061–1067 (2014)

    Article  Google Scholar 

  24. Chen, H., Jiao, H., Cheng, Y., Xu, K., Jia, X., Shi, Q., Wang, F.: In vitro and in vivo immunomodulatory activity of okra (Abelmoschus esculentus L.) polysaccharides. J. Med. Food 19(3), 253–265 (2016)

    Article  Google Scholar 

  25. Tugarova, A.V., Mamchenkova, P.V., Khanadeev, V.A., Kamnev, A.A.: Selenite reduction by the rhizobacterium Azospirillum brasilense, synthesis of extracellular selenium nanoparticles and their characterisation. New Biotechnol. 58, 17–24 (2020)

    Article  Google Scholar 

  26. Long, Q., Cui, L.-K., He, S.-B., Sun, J., Chen, Q.-Z., Bao, H.-D., Liang, T.-Y., Liang, B.-Y., Cui, L.-y: Preparation, characteristics and cytotoxicity of green synthesized selenium nanoparticles using Paenibacillus motobuensis LY5201 isolated from the local specialty food of longevity area. Sci. Rep. 13(1), 53 (2023)

    Article  Google Scholar 

  27. Yao, R., Wang, R., Wang, D., Su, J., Zheng, S., Wang, G.: Paenibacillus selenitireducens sp. Nov., a selenite-reducing bacterium isolated from a selenium mineral soil. Int. J. Sys. Evol. Microbiol. 64(Pt_3), 805–811 (2014)

    Article  Google Scholar 

  28. Trivedi, G., Patel, P., Saraf, M.: Synergistic effect of endophytic selenobacteria on biofortification and growth of Glycine max under drought stress. S. Afr. J. Bot. 134, 27–35 (2020)

    Article  Google Scholar 

  29. Kousha, M., Yeganeh, S., Keramat Amirkolaie, A.: Effect of sodium selenite on the bacteria growth, selenium accumulation, and selenium biotransformation in Pediococcus acidilactici. Food Sci. Biotechnol. 26, 1013–1018 (2017)

    Article  Google Scholar 

  30. Moreno-Martín, G., Espada-Bernabé, E., Gómez-Gómez, B., León-González, M.E., Madrid, Y.: Evaluation of the transformation of selenite and selenium nanoparticles to seleno-amino acids produced by Escherichia coli and Staphylococcus aureus by using liquid chromatography-inductively coupled plasma mass spectrometry and single-particle-inductively coupled plasma mass spectrometry and different sample treatments. Spectrochim. Acta, Part B 200, 106611 (2023)

    Article  Google Scholar 

  31. Dwivedi, S., AlKhedhairy, A.A., Ahamed, M., Musarrat, J.: Biomimetic synthesis of selenium nanospheres by bacterial strain JS-11 and its role as a biosensor for nanotoxicity assessment: a novel Se-bioassay. PLoS ONE 8(3), e57404 (2013)

    Article  Google Scholar 

  32. Torres, S.K., Campos, V.L., León, C.G., Rodríguez-Llamazares, S.M., Rojas, S.M., Gonzalez, M., Mondaca, M.A.: Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. J. Nanopart. Res. 14(11), 1–9 (2012)

    Article  Google Scholar 

  33. Kora, A.J.: Bacillus cereus, selenite-reducing bacterium from contaminated lake of an industrial area: a renewable nanofactory for the synthesis of selenium nanoparticles. Bioresour. Bioprocess. 5(1), 1–12 (2018)

    Article  MathSciNet  Google Scholar 

  34. Menon, S., Shrudhi Devi, K.S., Agarwal, H., Shanmugam, V.K.: Efficacy of biogenic selenium nanoparticles from an extract of ginger towards evaluation on anti-microbial and anti-oxidant activities. Colloid Interf. Sci. Commun. 29, 1–8 (2019)

    Article  Google Scholar 

  35. Cicco, N., Lanorte, M.T., Paraggio, M., Viggiano, M., Lattanzio, V.: A reproducible, rapid and inexpensive Folin-Ciocalteu micro-method in determining phenolics of plant methanol extracts. Microchem. J. 91(1), 107–110 (2009)

    Article  Google Scholar 

  36. Ebrahimzadeh, M.A., Pourmorad, F., Bekhradnia, A.R.: Iron chelating activity, phenol and flavonoid content of some medicinal plants from Iran. African J. Biotechnol. 7(18), 3188–3192 (2008)

    Google Scholar 

  37. Polshettiwar, S.A., Ganjiwale, R.O., Wadher, S.J., Yeole, P.G.: Spectrophotometric estimation of total tannins in some ayurvedic eye drops. Indian J. Pharm. Sci. 69(4), 574 (2007)

    Article  Google Scholar 

  38. Senguttuvan, J., Paulsamy, S., Karthika, K.: Phytochemical analysis and evaluation of leaf and root parts of the medicinal herb, Hypochaeris radicata L. for in vitro antioxidant activities. Asian Pac. J. Trop. Biomed. 4, S359–S367 (2014)

    Article  Google Scholar 

  39. Braniša, J., Jenisová, Z., Porubská, M., Jomová, K., Valko, M.: Spectrophotometric determination of chlorophylls and carotenoids. An effect of sonication and sample processing. J. Microbiol. Biotechnol. Food Sci. 2021, 61–64 (2021)

    Google Scholar 

  40. Li, J., Mu, Q., Du, Y., Luo, J., Liu, Y., Li, T.: Growth and photosynthetic inhibition of cerium oxide nanoparticles on soybean (Glycine max). Bull. Environ. Contam. Toxicol. 105, 119–126 (2020)

    Article  Google Scholar 

  41. Durán, P., Acuña, J.J., Jorquera, M.A., Azcón, R., Paredes, C., Rengel, Z., de la Luz Mora, M.: Endophytic bacteria from selenium-supplemented wheat plants could be useful for plant-growth promotion, biofortification and Gaeumannomyces graminis biocontrol in wheat production. Biol. Fertil. Soils 50(6), 983–990 (2014)

    Article  Google Scholar 

  42. Hunter, W.J., Manter, D.K.: Reduction of selenite to elemental red selenium by Pseudomonas sp strain CA5. Current Microbiol. 58(5), 493–498 (2009)

    Article  Google Scholar 

  43. Durán, P., Acuña, J.J., Gianfreda, L., Azcón, R., Funes-Collado, V., Mora, M.L.: Endophytic selenobacteria as new inocula for selenium biofortification. Appl. Soil. Ecol. 96, 319–326 (2015)

    Article  Google Scholar 

  44. Kora, A.J., Rastogi, L.: Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: an approach for conversion of selenite. J. Environ. Manage. 181, 231–236 (2016)

    Article  Google Scholar 

  45. Srivastava, N., Mukhopadhyay, M.: Biosynthesis and structural characterization of selenium nanoparticles mediated by Zooglea ramigera. Powder Technol. 244, 26–29 (2013)

    Article  Google Scholar 

  46. Du, J., Song, P., Fang, L., Wang, T., Wei, Z., Li, J., Xia, C.: Elastic, electronic and optical properties of the two-dimensional PtX2 (X= S, Se, and Te) monolayer. Appl. Surf. Sci. 435, 476–482 (2018)

    Article  Google Scholar 

  47. Tang, S., Wang, T., Jiang, M., Huang, C., Lai, C., Fan, Y., Yong, Q.: Construction of arabinogalactans/selenium nanoparticles composites for enhancement of the antitumor activity. Int. J. Biol. Macromol. 128, 444–451 (2019)

    Article  Google Scholar 

  48. Zhang, H., Zhou, H., Bai, J., Li, Y., Yang, J., Ma, Q., Qu, Y.: Biosynthesis of selenium nanoparticles mediated by fungus Mariannaea sp. HJ and their characterization. Colloids Surf., A 571, 9–16 (2019)

    Article  Google Scholar 

  49. Fritea, L., Laslo, V., Cavalu, S., Costea, T., Vicas, S.I.: Green biosynthesis of selenium nanoparticles using parsley (Petroselinum crispum) leaves extract. Studia Universitatis Vasile Goldis Arad Seria Stiintele Vietii 27(3), 203–208 (2017)

    Google Scholar 

  50. Yunusov, K.E., Sarymsakov, A.A., Turakulov, F.M.: Synthesis and physicochemical properties of the nanocomposites based on sodium carboxymethyl cellulose and selenium nanoparticles. Polym. Sci., Ser. B 64(1), 68–77 (2022)

    Article  Google Scholar 

  51. Forootanfar, H., Adeli-Sardou, M., Nikkhoo, M., Mehrabani, M., Amir-Heidari, B., Shahverdi, A.R., Shakibaie, M.: Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide. J. Trace Elem. Med Biol. 28(1), 75–79 (2014)

    Article  Google Scholar 

  52. Faramarzi, S., Anzabi, Y., Jafarizadeh-Malmiri, H.: Nanobiotechnology approach in intracellular selenium nanoparticle synthesis using Saccharomyces cerevisiae—fabrication and characterization. Arch. Microbiol. 202(5), 1203–1209 (2020)

    Article  Google Scholar 

  53. Siddiqui, S.A., Blinov, A.V., Serov, A.V., Gvozdenko, A.A., Kravtsov, A.A., Nagdalian, A.A., Ibrahim, S.A.: Effect of selenium nanoparticles on germination of Hordéum Vulgáre barley seeds. Coatings (2021). https://doi.org/10.3390/coatings11070862

    Article  Google Scholar 

  54. Bano, I., Skalickova, S., Sajjad, H., Skladanka, J., Horky, P.: Uses of selenium nanoparticles in the plant production. Agronomy 11(11), 2229 (2021)

    Article  Google Scholar 

  55. Rydlová, J., Jelínková, M., Dušek, K., Dušková, E., Vosátka, M., Püschel, D.: Arbuscular mycorrhiza differentially affects synthesis of essential oils in coriander and dill. Mycorrhiza 26, 123–131 (2016)

    Article  Google Scholar 

  56. Fazeli-Nasab, B., Sirousmehr, A.R., Azad, H.: Effect of titanium dioxide nanoparticles on essential oil quantity and quality in Thymus vulgaris under water deficit. J. Med. Plants By-prod. 7(2), 125–133 (2018)

    Google Scholar 

  57. Farooq, M.A., Islam, F., Ayyaz, A., Chen, W., Noor, Y., Hu, W., Zhou, W.: Mitigation effects of exogenous melatonin-selenium nanoparticles on arsenic-induced stress in Brassica napus. Environ. Pollut. (2022). https://doi.org/10.1016/j.envpol.2021.118473

    Article  Google Scholar 

  58. Ostadi, A., Javanmard, A., Amani Machiani, M., Kakaei, K.: Optimizing antioxidant activity and phytochemical properties of Peppermint (Mentha piperita L.) by Integrative application of biofertilizer and stress-modulating nanoparticles under drought stress conditions. Plants (2023). https://doi.org/10.3390/plants12010151

    Article  Google Scholar 

  59. Orhan, E., Esitken, A., Ercisli, S., Turan, M., Sahin, F.: Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci. Hortic. 111(1), 38–43 (2006)

    Article  Google Scholar 

  60. Keerthana, P., Vijayakumar, S., Vidhya, E., Punitha, V.N., Nilavukkarasi, M., Praseetha, P.K.: Biogenesis of ZnO nanoparticles for revolutionizing agriculture: A step towards anti-infection and growth promotion in plants. Ind. Crops Prod. 170, 113762 (2021)

    Article  Google Scholar 

  61. Bera, S., Singh, M., Mondal, D.: Agrobacterium-assisted selenium nanoparticles: molecular aspect of antifungal activity. Adv. Nat. Sci.: Nanosci. Nanotechnol. 9(1), 015004 (2017)

    Google Scholar 

  62. Dhekne, H.S., Senapati, S.: Immunomodulatory Potential of Phytochemicals: Recent Updates. In: Phytochemistry: an in-silico and in-vitro update, pp. 133–160. Springer, Singapore (2019)

    Google Scholar 

  63. Morell-Garcia, A., Rubio, R., López-Sánchez, J.F.: Study of selenocompounds from selenium-enriched culture of edible sprouts. Food Chem. 141(4), 3738–3743 (2013)

    Article  Google Scholar 

  64. Gudkov, S., Glazkov, P., Zavalin, A., Kovaleva, T., Nikulina, E., Glushko, A., Davydov, R.: Production and application of selenium nanoparticles to prevent ionizing radiation-induced oxidative stress. Conf. Series Earth Environ. Sci. (2019). https://doi.org/10.1088/1755-1315/390/1/012031

    Article  Google Scholar 

  65. Hadrup, N., Ravn-Haren, G.: Acute human toxicity and mortality after selenium ingestion: a review. J. Trace Elem. Med Biol. 58, 126435 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We would like the convey our gratitude to the Department of Biotechnology and Chemistry, Stella Maris College for their constant support. We would also like to extend our gratefulness to Vels University and SSN College of Engineering for their support in instrumental analysis. We would like to recognize Stella Maris College for providing financial support through SEED Money.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Veena Gayathri or Gayathri Rangasamy.

Ethics declarations

Conflicts of interest

Authors declare that there are no any conflicts of interest for this research article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26619 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonali, J.M.I., Gayathri, K.V., Rangasamy, G. et al. Efficacy of Biogenic Selenium Nanoparticles from Pseudomonas Libanesis Towards Growth Enhancement of Okra. Waste Biomass Valor 15, 1793–1806 (2024). https://doi.org/10.1007/s12649-023-02233-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02233-1

Keywords

Navigation