Skip to main content
Log in

Effect of sodium selenite on the bacteria growth, selenium accumulation, and selenium biotransformation in Pediococcus acidilactici

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, the effect of low selenium concentrations on bacteria growth, selenium bioaccumulation, and selenium speciation in Pediococcus acidilactici was investigated. Six different sodium selenite (Na2SeO3) solutions with concentrations of 0, 0.5, 1, 2, 3, and 4 mg/L were added in MRS broth for 24 h. Then, the obtained bacterial pellets were weighed. The contents of total selenium and selenium species in the bacterial pellets were measured via optimized enzymatic hydrolysis and HPLC-ICP-MS. The maximum dried P. acidilactici biomass of 1.44 g/L was achieved by utilizing 1 mg/L Na2SeO3. By increasing sodium selenite concentrations, total selenium contents were significantly increased from 0.14 to 1.45 mg/g dry weight (p < 0.05). The findings indicated that selenium was favorably incorporated into the bacteria protein fraction and mainly formed selenocysteine. Therefore, selenium-enriched lactic acid bacterium P. acidilactici can deliver a less-toxic, more bioavailable selenium source for human and animal nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mrvčić J, Stanzer D, Šolić E, Stehlik-Tomas V. Interaction of lactic acid bacteria with metal ions: opportunities for improving food safety and quality. World J. Microbiol. Biotechnol. 28: 2771–2782 (2012)

    Article  Google Scholar 

  2. Pophaly SD, Singh P, Kumar H, Tomar SK, Singh R. Selenium enrichment of lactic acid bacteria and bifidobacteria: A functional food perspective. Trends Food Sci. Technol. 39: 135–145 (2014)

    Article  CAS  Google Scholar 

  3. Balcázar JL, De Blas I, Ruiz-Zarzuela I, Cunningham D, Vendrell D, Múzquiz JL. The role of probiotics in aquaculture. Vet. Microbiol. 114: 173–186 (2006)

    Article  Google Scholar 

  4. Xia SK, Chen L, Liang JQ. Enriched selenium and its effects on growth and biochemical composition in Lactobacillus bulgaricus. J. Agr. Food Chem. 55: 2413–2417 (2007)

    Article  CAS  Google Scholar 

  5. Alzate A, Cañas B, Pérez-Munguía S, Hernández-Mendoza H, Pérez-Conde C, Gutiérrez AM, Cámara C. Evaluation of the inorganic selenium biotransformation in selenium-enriched yogurt by HPLC-ICP-MS. J. Agr. Food Chem. 55: 9776–9783 (2007)

    Article  CAS  Google Scholar 

  6. Alzate A, Fernández-Fernández A, Perez-Conde M, Gutiérrez A, Cámara C. Comparison of biotransformation of inorganic selenium by Lactobacillus and Saccharomyces in lactic fermentation process of yogurt and kefir. J. Agr. Food Chem. 56: 8728–8736 (2008)

    Article  CAS  Google Scholar 

  7. Palomo M, Gutiérrez AM, Pérez-Conde MC, Cámara C, Madrid Y. Se metallomics during lactic fermentation of Se-enriched yogurt. Food Chem. 164: 371–379 (2014)

    Article  CAS  Google Scholar 

  8. Yang J, Huang K, Qin S, Wu X, Zhao Z, Chen F. Antibacterial action of selenium-enriched probiotics against pathogenic Escherichia coli. Digest. Dis. Sci. 54: 246–254 (2009)

    Article  CAS  Google Scholar 

  9. Araúz ILC, Afton S, Wrobel K, Caruso JA, Corona JFG, Wrobel K. Study on the protective role of selenium against cadmium toxicity in lactic acid bacteria: An advanced application of ICP-MS. J. Hazard. Mater. 153: 1157–1164 (2008)

    Article  Google Scholar 

  10. Biswas S, Ray P, Johnson M, Ray B. Influence of growth conditions on the production of a bacteriocin, pediocin AcH, by Pediococcus acidilactici H. App. Env. Microbiol. 57: 1265–1267 (1991)

    CAS  Google Scholar 

  11. Burr G, Gatlin D, Ricke S. Microbial ecology of the gastrointestinal tract of fish and the potential application of prebiotics and probiotics in finfish aquaculture. J. World Aquacult. Soc. 36: 425–436 (2005)

    Article  Google Scholar 

  12. Fernandez B, Savard P, Fliss I. Survival and metabolic activity of pediocin producer Pediococcus acidilactici UL5: Its Impact on intestinal microbiota and Listeria monocytogenes in a model of the human terminal ileum. Microbial. Ecol. 72: 931–942 (2016)

    Article  CAS  Google Scholar 

  13. Gatesoupe F-J. Probiotic and formaldehyde treatments of Artemia nauplii as food for larval pollack, Pollachius pollachius. Aquaculture 212: 347–360 (2002)

    Article  Google Scholar 

  14. Attri P, Jodha D, Gandhi D, Chanalia P, Dhanda S. In vitro evaluation of Pediococcus acidilactici NCDC 252 for its probiotic attributes. Int. J. Dairy Technol. 68: 533–542 (2015)

    Article  CAS  Google Scholar 

  15. Barros RR, Maria Da Glória SC, Peralta JM, Facklam RR, Teixeira LM. Phenotypic and genotypic characterization of Pediococcus strains isolated from human clinical sources. J. Clin. Microbiol. 39: 1241–1246 (2001)

    Article  CAS  Google Scholar 

  16. Mizutani W, Yamasaki R, Lin JJ, Kuki M, Kato G. Pediococcus an unique probiotic we use as a novel GI supplement. Ann. Meet. Jpn. Brd. Vet. Pract.: 3269–3272 (2007)

  17. Altuntas EG, Cosansu S, Ayhan K. Some growth parameters and antimicrobial activity of a bacteriocin-producing strain Pediococcus acidilactici 13. Int. J. Food Microbiol. 141: 28–31 (2010)

    Article  CAS  Google Scholar 

  18. Stolz JF, Basu P, Santini JM, Oremland RS. Arsenic and selenium in microbial metabolism. Ann. Rev. Microbiol. 60: 107–130 (2006)

    Article  CAS  Google Scholar 

  19. Zhang B, Zhou K, Zhang J, Chen Q, Liu G, Shang N, Qin W, Li P, Lin F. Accumulation and species distribution of selenium in Se-enriched bacterial cells of the Bifidobacterium animalis 01. Food Chem. 115: 727–734 (2009)

    Article  CAS  Google Scholar 

  20. Andreoni V, Luischi MM, Cavalca L, Erba D, Ciappellano S. Selenite tolerance and accumulation in the Lactobacillus species. Ann. Microbiol. 50: 77–88 (2000)

    CAS  Google Scholar 

  21. Kurek E, Ruszczyńska A, Wojciechowski M, Łuciuk A, Michalska-Kacymirow M, Motyl I, Bulska E. Bio-transformation of selenium in Se-enriched bacterial strains of Lactobacillus casei. Rocz. Panstw. Zakl. Hig. 67: 253–262 (2016)

    Google Scholar 

  22. Barwick M, Maher W. Biotransference and biomagnification of selenium copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia. Marine Env. Res. 56: 471–502 (2003)

    Article  CAS  Google Scholar 

  23. Imoto T, Yagishita K. A simple activity measurement of lysozyme. Agr. Bio. Chem. 35: 1154–1156 (1971)

    Article  CAS  Google Scholar 

  24. Calomme M, Branden K, Berghe D. Selenium and Lactobacillus species. J. App. Bacteriol. 79: 331–340 (1995)

    Article  CAS  Google Scholar 

  25. Rother M. Selenium metabolism in prokaryotes. pp. 457–470. In: Selenium: its molecular biology and role in human health. Hatfield DL, Berry MJ, Gladyshev VN (eds). Springer, New York, USA (2011)

Download references

Acknowledgements

This work was financially supported by Sari Agricultural Sciences and Natural Resources University, Sari, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakineh Yeganeh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kousha, M., Yeganeh, S. & Keramat Amirkolaie, A. Effect of sodium selenite on the bacteria growth, selenium accumulation, and selenium biotransformation in Pediococcus acidilactici . Food Sci Biotechnol 26, 1013–1018 (2017). https://doi.org/10.1007/s10068-017-0142-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0142-y

Keywords

Navigation