Skip to main content

Advertisement

Log in

Biomass-Based/Derived Value-Added Porous Absorbents for Oil/Water Separation

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The frequent leakage of petroleum and organic solvents has catastrophic and far-reaching implications for the ecological environment, resulting in severe threats to aquatic organisms. Absorbing oil from water with porous material has emerged as an eco-friendly and efficient option. Among these explored sorbents, biomass-based/derived materials are abundant in pores and their multiscale porosity serving as a storage space for the absorption, making them excellent sorbents especially after surface modification. In this review, we summarized several biomass-based/derived porous materials for oil/water separation including biochars (BC), cellulose-based/derived materials, chitosan-based/derived materials, lignin-based/derived materials, biomass waste-based/derived materials and some other common biomass-based/derived materials. The detailed synthesis methodologies and activation/modification mechanism together with their effective participation in the field of oil/water adsorption/absorption were discussed. Moreover, perspectives for future application of the biomass-based/derived porous materials in the area are also provided.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Copyright 2018 Springer)

Fig. 3

(Copyright 2019 American Chemical Society). b Diagram of preparation, oil/water separation, and wettability transition of dual-responsive cellulose-based aerogel [65] (Copyright 2017 Springer). c The thermal absorption process of organic solvent and oils [66]. (Copyright 2021 Elsevier)

Fig. 4

(Copyright 2021 Elsevier)

Fig. 5

(Copyright 2021 Elsevier)

Similar content being viewed by others

Data Availability

Research data available on reasonable request from the corresponding authors.

References

  1. Unur, E.: Functional nanoporous carbons from hydrothermally treated biomass for environmental purification. Micropor. Mesopor. Mater. 168, 92–101 (2013). https://doi.org/10.1016/j.micromeso.2012.09.027

    Article  Google Scholar 

  2. Inyang, M., Dickenson, E.: The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: a review. Chemosphere 134, 232–240 (2015). https://doi.org/10.1016/j.chemosphere.2015.03.072

    Article  Google Scholar 

  3. Gui, X., Zeng, Z., Lin, Z., Gan, Q., Xiang, R., Zhu, Y., Cao, A., Tang, Z.: Magnetic and highly recyclable macroporous carbon nanotubes for spilled oil sorption and separation. ACS Appl. Mater. Interfaces 5, 5845–5850 (2013). https://doi.org/10.1021/am4015007

    Article  Google Scholar 

  4. Zhang, X., Li, Z., Liu, K., Jiang, L.: Bioinspired multifunctional foam with self-cleaning and oil/water separation. Adv. Funct. Mater. 23, 2881–2886 (2013). https://doi.org/10.1002/adfm.201202662

    Article  Google Scholar 

  5. Bi, H., Yin, Z., Cao, X., Xie, X., Tan, C., Huang, X., Chen, B., Chen, F., Yang, Q., Bu, X., Lu, X., Sun, L., Zhang, H.: Carbon fiber aerogel made from raw cotton: a novel, efficient and recyclable sorbent for oils and organic solvents. Adv. Mater. 25, 5916–5921 (2013). https://doi.org/10.1002/adma.201302435

    Article  Google Scholar 

  6. Sam, E.K., Sam, D.K., Lv, X., Liu, B., Xiao, X., Gong, S., Yu, W., Chen, J., Liu, J.: Recent development in the fabrication of self-healing superhydrophobic surfaces. Chem. Eng. J. 373, 531–546 (2019). https://doi.org/10.1016/j.cej.2019.05.077

    Article  Google Scholar 

  7. Bhatnagar, A., Sillanpää, M.: Removal of natural organic matter (NOM) and its constituents from water by adsorption—a review. Chemosphere 166, 497–510 (2017). https://doi.org/10.1016/j.chemosphere.2016.09.098

    Article  Google Scholar 

  8. Sabir, S.: Approach of cost-effective adsorbents for oil removal from oily water. Crit. Rev. Environ. Sci. Technol. 45, 1916–1945 (2015). https://doi.org/10.1080/10643389.2014.1001143

    Article  Google Scholar 

  9. Bi, H., Xie, X., Yin, K., Zhou, Y., Wan, S., He, L., Xu, F., Banhart, F., Sun, L., Ruoff, R.S.: Spongy graphene as a highly efficient and recyclable sorbent for oils and organic Solvents. Adv. Funct. Mater. 22, 4421–4425 (2012). https://doi.org/10.1002/adfm.201200888

    Article  Google Scholar 

  10. Sakthivel, T., Reid, D.L., Goldstein, I., Hench, L., Seal, S.: Hydrophobic high surface area zeolites derived from fly ash for oil spill remediation. Environ. Sci. Technol. 47, 5843–5850 (2013). https://doi.org/10.1021/es3048174

    Article  Google Scholar 

  11. Wang, C.F., Tzeng, F.S., Chen, H.G., Chang, C.J.: Ultraviolet durable superhydrophobic Zinc oxide-coated mesh films for surface and underwater-oil capture and transportation. Langmuir 28, 10015–10019 (2012). https://doi.org/10.1021/la301839a

    Article  Google Scholar 

  12. Carmody, O., Frost, R., Xi, Y., Kokot, S.: Adsorption of hydrocarbons on organo-clays implications for oil spill remediation. J. Colloid Interface Sci. 305, 17–24 (2007). https://doi.org/10.1016/j.jcis.2006.09.032

    Article  Google Scholar 

  13. Lin, J., Shang, Y., Ding, B., Yang, J., Yu, J., Al-Deyab, S.S.: Nanoporous polystyrene fibers for oil spill cleanup. Mar. Pollut. Bull. 64, 347–352 (2012). https://doi.org/10.1016/j.marpolbul.2011.11.002

    Article  Google Scholar 

  14. Doshi, B., Sillanpää, M., Kalliola, S.: A review of bio-based materials for oil spill treatment. Water Res. 135, 262–277 (2018). https://doi.org/10.1016/j.watres.2018.02.034

    Article  Google Scholar 

  15. Chai, W., Liu, X., Zou, J., Zhang, X., Li, B., Yin, T.: Pomelo peel modified with acetic anhydride and styrene as new sorbents for removal of oil pollution. Carbohydr. Polym. 132, 245–251 (2015). https://doi.org/10.1016/j.carbpol.2015.06.060

    Article  Google Scholar 

  16. Wu, C., Huang, X.Y., Wu, X.F., Qian, R., Jiang, P.K.: Mechanically flexible and multifunctional polymer-based graphene foams for elastic conductors and oil/water separators. Adv. Mater. 25, 5658–5662 (2013). https://doi.org/10.1002/adma.201302406

    Article  Google Scholar 

  17. Sun, H.Y., Xu, Z., Gao, C.: Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 25, 2554–2560 (2013). https://doi.org/10.1002/adma.201204576

    Article  Google Scholar 

  18. Kang, W.W., Cui, Y., Qin, L., Yang, Y.Z., Zhao, Z.B., Wang, X.Z., Liu, X.G.: A novel robust adsorbent for efficient oil/water separation: magnetic carbon nanospheres/graphene composite aerogel. J. Hazard. Mater. 392, 122499 (2020). https://doi.org/10.1016/j.jhazmat.2020.122499

    Article  Google Scholar 

  19. Zhu, Q., Chu, Y., Wang, Z.K., Chen, N., Lin, L., Liu, F.T., Pan, Q.M.: Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material. J. Mater. Chem. A 1, 5386–5393 (2013). https://doi.org/10.1039/C3TA00125C

    Article  Google Scholar 

  20. Ge, D.D., Zhang, Y., Cui, Z.S., Wang, G.L., Liu, J., Lv, X.M.: Constructing robust and magnetic PU sponges modified with Fe3O4/GO nanohybrids for efficient oil/water separation. J. Coat. Technol. Res. (2022). https://doi.org/10.1007/s11998-022-00699-7

    Article  Google Scholar 

  21. Zhang, L., Wu, J.J., Wang, Y.X., Long, Y.H., Zhao, N., Xu, J.: Combination of bioinspiration: a general route to superhydrophobic particles. J. Am. Chem. Soc. 134, 9879–9881 (2012). https://doi.org/10.1021/ja303037j

    Article  Google Scholar 

  22. Zhou, X.Y., Zhang, Z.Z., Xu, X.H., Guo, F., Zhu, X.T., Men, X.H., Ge, B.: Robust and durable superhydrophobic cotton fabrics for oil/water separation. ACS Appl. Mater. Interfaces 5, 7208–7214 (2013). https://doi.org/10.1021/am4015346

    Article  Google Scholar 

  23. Tang, X.M., Si, Y., Ge, J.L., Ding, B., Liu, L.F., Zheng, G., Luo, W.J., Yu, J.Y.: In-situ polymerized superhydrophobic and superoleophilic nanofibrous membranes for gravity driven oil/water separation. Nanoscale 5, 11657–11664 (2013). https://doi.org/10.1039/C3NR03937D

    Article  Google Scholar 

  24. Zhang, J.P., Seeger, S.: Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv. Funct. Mater. 21, 4699–4704 (2011). https://doi.org/10.1002/adfm.201101090

    Article  Google Scholar 

  25. Wang, Z.J., Wang, Y., Liu, G.J.: Rapid and efficient separation of oil from oil-in-water emulsions using a janus cotton fabric. Angew. Chem. Int. Ed. 55, 1291–1294 (2016). https://doi.org/10.1002/ange.201507451

    Article  Google Scholar 

  26. Wang, Y.F., Lai, C.L., Wang, X.W., Liu, Y., Hu, H.W., Guo, Y.J., Ma, K.K., Fei, B., Xin, J.H.: Beads-on-string structured nanofibers for smart and reversible oil/water separation with outstanding antifouling property. ACS Appl. Mater. Interfaces 8, 25612–25620 (2016). https://doi.org/10.1021/acsami.6b08747

    Article  Google Scholar 

  27. Niu, Z.Q., Liu, L., Zhang, L., Chen, X.: Porous graphene materials for water remediation. Small 10, 3434–3441 (2014). https://doi.org/10.1002/smll.201400128

    Article  Google Scholar 

  28. Sankaranarayanan, S., Lakshmi, D.S., Vivekanandhan, S., Ngamcharussrivichai, C.: Biocarbons as emerging and sustainable hydrophobic/oleophilic sorbent materials for oil/water separation, Sustainable. Mater. Technol. 28, 2214–9937 (2021). https://doi.org/10.1016/j.susmat.2021.e00268

    Article  Google Scholar 

  29. Yang, W.J., Yuen, A.C.Y., Li, A., Lin, B., Chen, T.B.Y., Yang, W., Lu, H.D., Yeoh, G.H.: Recent progress in bio-based aerogel absorbents for oil/water separation. Cellulose 26, 6449–6476 (2019). https://doi.org/10.1007/s10570-019-02559-x

    Article  Google Scholar 

  30. Spiridon, I., Darie-Nit, R.N., Hitruc, G.E., Ludwiczak, J., Spiridon, I.A.C., Niculaua, M.: New opportunities to valorize biomass wastes into green materials. J. Cleaner Prod. 133, 235–242 (2016). https://doi.org/10.1016/j.jclepro.2016.05.143

    Article  Google Scholar 

  31. Tao, Y.S., Kanoh, H., Abrams, L., Kaneko, K.: Mesopore modified zeolites: preparation, characterization, and applications. Chem. Rev. 106, 896–910 (2006). https://doi.org/10.1021/cr040204o

    Article  Google Scholar 

  32. Tan, I.A.W., Hameed, B.H., Ahmad, A.L.: Equilibrium, kinetic studies on basic dye adsorption by oil palm fibre activated carbon. Chem. Eng. J. 127, 111–119 (2007). https://doi.org/10.1021/cr040204o

    Article  Google Scholar 

  33. Mahari, W.A.W., Waiho, K., Azwar, E., Fazhan, H., Peng, W.X.: A state-of-the-art review on producing engineered biochar from shellfish waste and its application in aquaculture wastewater treatment. Chemosphere 288, 132559 (2021). https://doi.org/10.1016/j.chemosphere.2021.132559

    Article  Google Scholar 

  34. Guleria, A., Kumari, G., Lima, E.C., Ashish, D.K., Thakur, V., Singh, K.: Removal of inorganic toxic contaminants from wastewater using sustainable biomass: a review. Sci. Total Environ. 823, 153689 (2022). https://doi.org/10.1016/j.scitotenv.2022.153689

    Article  Google Scholar 

  35. Sam, E.K., Liu, J., Lv, X.M.: Surface Engineering materials of superhydrophobic sponges for oil/water separation: a review. Ind. Eng. Chem. Res. 60, 2353–2364 (2021). https://doi.org/10.1021/acs.iecr.0c05906

    Article  Google Scholar 

  36. Yang, J., Xu, P., Xia, Y.F., Chen, B.B.: Multifunctional carbon aerogels from typha orientalis for oil/water separation and simultaneous removal of oil-soluble pollutants. Cellulose 25, 5863–5875 (2018). https://doi.org/10.1007/s10570-018-1994-x

    Article  Google Scholar 

  37. Foong, S.Y., Chan, Y.H., Chin, B.L.F., Lock, S.S.M., Yee, C.Y.: Production of biochar from rice straw and its application for wastewater remediation—an overview. Bioresour. Technol. 360, 127588 (2022). https://doi.org/10.1016/j.biortech.2022.127588

    Article  Google Scholar 

  38. Xiang, W., Zhang, X., Chen, J., Zou, W., He, F., Hu, X., Tsang, D.C.W., Ok, Y.S., Gao, B.: Biochar technology in wastewater treatment: a critical review. Chemosphere 252, 126539 (2020). https://doi.org/10.1016/j.chemosphere.2020.126539

    Article  Google Scholar 

  39. Foong, S.Y., Chan, Y.H., Lock, S.S.M., Chin, B.L.F.: Microwave processing of oil palm wastes for bioenergy production and circular economy: recent advancements, challenges, and future prospects. Bioresour. Technol. 369, 128478 (2023). https://doi.org/10.1016/j.biortech.2022.128478

    Article  Google Scholar 

  40. Nguyen, H.N., Pignatello, J.J.: Laboratory tests of biochars as absorbents for use in recovery or containment of marine crude oil spills. Environ. Eng. Sci. 30, 374–380 (2013). https://doi.org/10.1089/ees.2012.0411

    Article  Google Scholar 

  41. Sohaimi, K.S.A., Ngadi, N., Mat, H., Inuwa, I.M., Wong, S.: Synthesis, characterization and application of textile sludge biochars for oil removal. J. Environ. Chem. Eng. 5, 1415–1422 (2017). https://doi.org/10.1016/j.jece.2017.02.002

    Article  Google Scholar 

  42. Alameri, K., Giwa, A., Yousef, L., Alraeesi, A., Taher, H.: Sorption and removal of crude oil spills from seawater using peat-derived biochar: an optimization study. J. Environ. Manag. 250, 109465 (2019). https://doi.org/10.1016/j.jenvman.2019.109465

    Article  Google Scholar 

  43. Gheriany, I.A.E., El Saqa, F.A., Amer, A.A., El, R., Hussein, M.: Oil spill sorption capacity of raw and thermally modified orange peel waste. Alexandr. Eng. J. 59, 925–932 (2020). https://doi.org/10.1016/j.aej.2020.03.024

    Article  Google Scholar 

  44. Devi, N.S., Hariram, M., Vivekanandhan, S.: Modification techniques to improve the capacitive performance of biocarbon materials. J. Energy Storage 33, 101870 (2021). https://doi.org/10.1016/j.est.2020.101870

    Article  Google Scholar 

  45. Guo, S., Peng, J., Li, W., Yang, K., Zhang, L., Zhang, S., Xia, H.: Effects of CO2 activation on porous structures of coconut shell-based activated carbons. Appl. Surf. Sci. 255, 8443–8449 (2009). https://doi.org/10.1016/j.apsusc.2009.05.150

    Article  Google Scholar 

  46. Rajapaksha, A.U., Vithanage, M., Ahmad, M., Seo, D.C., Cho, J.S., Lee, S.E., Lee, S.S., Ok, Y.S.: Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar. J. Hazard. Mater. 290, 43–50 (2015). https://doi.org/10.1016/j.jhazmat.2015.02.046

    Article  Google Scholar 

  47. Rajak, V.K., Kumar, S., Thombre, N.V., Mandal, A.: Synthesis of activated charcoal from saw-dust and characterization for adsorptive separation of oil from oil-in-water emulsion. Chem. Eng. Commun. 205, 897–913 (2018). https://doi.org/10.1080/00986445.2017.1423288

    Article  Google Scholar 

  48. Gao, S., Li, X., Li, L., Wei, X.: A versatile biomass derived carbon material for oxygen reduction reaction, supercapacitors and oil/water separation. Nano Energy 33, 334–342 (2017). https://doi.org/10.1016/j.nanoen.2017.01.045

    Article  Google Scholar 

  49. Yang, I., Jung, M., Kim, M.S., Choi, D., Jung, J.C.: Physical and chemical activation mechanisms of carbon materials based on the microdomain model. J. Mater. Chem. A 9, 9815–9825 (2021). https://doi.org/10.1039/d1ta00765c

    Article  Google Scholar 

  50. Canales-Flores, R.A., Prieto-García, F.: Activation methods of carbonaceous materials obtained from agricultural waste. Chem. Biodivers. 13, 261–268 (2016). https://doi.org/10.1002/cbdv.201500039

    Article  Google Scholar 

  51. MohamadNor, N., Lau, L.C., Lee, K.T., Mohamed, A.R.: Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—a review. J. Environ. Chem. Eng. 1, 658 (2013). https://doi.org/10.1016/j.jece.2013.09.017

    Article  Google Scholar 

  52. Gwenzi, W., Chaukura, N., Noubactep, C., Mukome, F.N.D.: Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. J. Environ. Manag. 197, 732–749 (2017). https://doi.org/10.1016/j.jenvman.2017.03.087

    Article  Google Scholar 

  53. Sam, D.K., Sam, E.K., Durairaj, A., Lv, X.M., Zhou, Z.J., Liu, J.: Synthesis of biomass-based carbon aerogels in energy and sustainability. Carbohydr. Res. 491, 107986 (2020). https://doi.org/10.1016/j.carres.2020.107986

    Article  Google Scholar 

  54. A. C. Pierre, A. Rigacci, Adv. Sol–Gel Deriv. Materials Technol, in: Aerogels Handbook, 2011, pp. 21–46, https://doi.org/10.1007/978-1-4419-7589-8_2

  55. Joshi, P., Sharma, O.P., Ganguly, S.K., Srivastava, M., Khatri, O.P.: Fruit waste-derived cellulose and graphene-based aerogels: plausible adsorption pathways for fast and efficient removal of organic dyes. J. Colloid Interface Sci. 608, 2870–2883 (2022). https://doi.org/10.1016/j.jcis.2021.11.016

    Article  Google Scholar 

  56. Wang, S., Peng, X., Zhong, L., Tan, J., Jing, S., Cao, X., Chen, W., Liu, C., Sun, R.: An ultralight, elastic, cost-effective, and highly recyclable superabsorbent from microfibrillated cellulose fibers for oil spillage cleanup. J. Mater. Chem. A 3, 8772–8781 (2015). https://doi.org/10.1039/C4TA07057G

    Article  Google Scholar 

  57. Li, Y.Q., Samad, Y.A., Polychronopoulou, K., Alhassan, S.M., Liao, K.: Carbon aerogel from winter melon for highly efficient and recyclable oils and organic solvents absorption. ACS Sustain. Chem. Eng. 2, 1492–1497 (2014). https://doi.org/10.1021/sc500161b

    Article  Google Scholar 

  58. Wang, Y., Zhu, L., Zhu, F., You, L., Shen, X., Li, S.: Removal of organic solvents/oils using carbon aerogels derived from waste durian shell. J. Taiwan Inst. Chem. Eng. 78, 351–358 (2017). https://doi.org/10.1016/j.jtice.2017.06.037

    Article  Google Scholar 

  59. Yuan, W., Zhang, X., Zhao, J., Li, Q., Ao, C., Xia, T., Zhang, W., Lu, C.: Ultra-lightweight and highly porous carbon aerogels from bamboo pulp fibers as an effective sorbent for water treatment. Results Phys. 7, 2919–2924 (2017). https://doi.org/10.1016/j.rinp.2017.08.011

    Article  Google Scholar 

  60. Liu, Y., Zhang, K., Yao, W.G., Zhang, C.C., Han, Z.W., Ren, L.Q.: A facile electrodeposition process for the fabrication of superhydrophobic and superoleophilic copper mesh for efficient oil/water separation. Ind. Eng. Chem. Res. 55, 2704–2712 (2016). https://doi.org/10.1021/acs.iecr.5b03503

    Article  Google Scholar 

  61. Sun, F., Liu, W., Dong, Z., Deng, Y.: Underwater superoleophobicity cellulose nanofibril aerogel through regioselective sulfonation for oil/water separation. Chem. Eng. J. 15, 774–782 (2017). https://doi.org/10.1016/j.cej.2017.07.142

    Article  Google Scholar 

  62. Zhang, H., Li, Y.Q., Shi, R.H., Chen, L.H., Fan, M.Z.: A robust salt-tolerant superoleophobic chitosan/nanofibrillated cellulose aerogel for highly efficient oil/water separation. Carbohydr. Polym. 200, 611–615 (2018). https://doi.org/10.1016/j.carbpol.2018.07.071

    Article  Google Scholar 

  63. Meng, G., Peng, H., Wu, J., Wang, Y., Wang, H.: Fabrication of superhydrophobic cellulose/chitosan composite aerogel for oil/water separation. Fibers Polym. 18, 706–712 (2017). https://doi.org/10.1007/s12221-017-1099-4

    Article  Google Scholar 

  64. Li, Y.Z., Zhu, L.Q., Grishkewich, N., Tam, K.C., Yuan, J.Y., Mao, Z.P., Sui, X.F.: CO2-responsive cellulose nanofibers aerogels for switchable oil−water separation. ACS Appl. Mater. Interfaces 11, 9367–9373 (2019). https://doi.org/10.1021/acsami.8b22159

    Article  Google Scholar 

  65. Zhao, L., Li, L., Wang, Y., Wu, J., Meng, G., Liu, Z., Guo, X.: Preparation and characterization of thermo- and pH dual-responsive 3D cellulose-based aerogel for oil/water separation. Appl. Phys. A Mater. Sci. Process. 124, 1–9 (2018). https://doi.org/10.1007/s00339-017-1358-7

    Article  Google Scholar 

  66. Li, Z.X., Lei, S.J., Xi, J.C., Ye, D.L., Hu, W.Z., Song, L., Hu, Y., Cai, W., Gui, Z.: Bio-based multifunctional carbon aerogels from sugarcane residue for organic solvents adsorption and solar-thermal-driven oil removal. Chem. Eng. J. 426, 129580 (2021). https://doi.org/10.1016/j.cej.2021.129580

    Article  Google Scholar 

  67. Wang, G., He, Y., Wang, H., Zhang, L., Yu, Q.Y., Peng, S.S., Wu, X.D., Ren, T.H., Zeng, Z.X., Xue, Q.J.: Robust superhydrophilicity and under-water superoleophobicity cellulose sponge for highly effective oil/water separation. Green Chem. 17, 3093–3099 (2015). https://doi.org/10.1039/C5GC00025D

    Article  Google Scholar 

  68. Chen, J., Zhang, Y., Chen, C., Xu, M., Wang, G., Zeng, Z., Wang, L., Xue, Q.: Cellulose sponge with superhydrophilicity and high oleophobicity both in air and under water for efficient oil/water emulsion separation. Macromol. Mater. Eng. 302, 1700086 (2017). https://doi.org/10.1002/mame.201700086

    Article  Google Scholar 

  69. Meng, X., Dong, Y.Y., Zhao, Y.J., Liang, L.P.: Preparation and modification of cellulose sponge and application of oil/water separation. RSC Adv. 10, 41713 (2020). https://doi.org/10.1039/D0RA07910C

    Article  Google Scholar 

  70. Qin, Y., Li, S., Li, Y., Pan, F., Han, L., Chen, Z., Yin, X., Wang, L., Wang, H.: Mechanically robust polybenzoxazine/reduced graphene oxide wrapped-cellulose sponge towards highly efficient oil/water separation, and solar-driven for cleaning up crude oil. Compos. Sci. Technol. 197, 54 (2020). https://doi.org/10.1016/j.compscitech.2020.108254

    Article  Google Scholar 

  71. Wei, M., Gao, Y., Li, X., Serpe, M.J.: Stimuli-responsive polymers and their applications. Polym. Chem. 8, 127–143 (2017). https://doi.org/10.1039/C6PY01585A

    Article  Google Scholar 

  72. Li, L., Rong, L., Xu, Z., Wang, B., Feng, X., Mao, Z., Xu, H., Yuan, J., Liu, S., Sui, X.: Cellulosic sponges with pH responsive wettability for efficient oil/water separation. Carbohydr. Polym. 237, 116133 (2020). https://doi.org/10.1016/j.carbpol.2020.116133

    Article  Google Scholar 

  73. Periyasamy, T., Asrafali, S.P., Haldhar, R., Madhappan, S., Vanaraj, R., Raorane, C.J., Kim, S.C.: Modified cotton sponge with bio-based polybenzoxazine for plasticizer absorption and oil–water separation. ACS Appl. Polym. Mater. 4, 950–959 (2022). https://doi.org/10.1021/acsapm.1c01408

    Article  Google Scholar 

  74. Yi, L.F., Yang, J.Y., Fang, X., Xia, Y., Zhao, L.J., Wu, H., Guo, S.Y.: Facile fabrication of wood-inspired aerogel from chitosan for efficient removal of oil from water. J. Hazard. Mater. 385, 121507 (2020). https://doi.org/10.1016/j.jhazmat.2019.121507

    Article  Google Scholar 

  75. Yin, Z.C., Sun, X.J., Bao, M.M., Li, Y.: Construction of a hydrophobic magnetic aerogel based on chitosan for oil/water separation applications. Int. J. Biol. Macromol. 165, 1869–1880 (2020). https://doi.org/10.1016/j.ijbiomac.2020.10.068

    Article  Google Scholar 

  76. Su, C., Yang, H., Zhao, H., Liu, Y., Chen, R.: Recyclable and biodegradable superhydrophobic and superoleophilic chitosan sponge for the effective removal of oily pollutants from water. Chem. Eng. J. 330, 423–432 (2017). https://doi.org/10.1016/j.cej.2017.07.157

    Article  Google Scholar 

  77. Li, Z.Y., Shao, L., Hu, W.B., Zheng, T.T., Lu, L.B., Cao, Y., Chen, Y.J.: Excellent reusable chitosan/cellulose aerogel as an oil and organic solvent absorbent. Carbohydr. Polym. 191, 183–190 (2018). https://doi.org/10.1016/j.carbpol.2018.03.027

    Article  Google Scholar 

  78. Wang, C., He, G., Cao, J., Fan, L., Cai, W., Yin, Y.: Underwater superoleophobic and salt tolerant sodium alginate/N-Succinyl chitosan composite aerogel for highly efficient oil–water separation. ACS Appl. Polym. Mater. 2, 1124–1133 (2020). https://doi.org/10.1021/acsapm.9b00908

    Article  Google Scholar 

  79. Liang, F.Y., Hou, T.T., Li, S.D., Liao, L.S., Li, P.W., Li, C.P.: Elastic, super-hydrophobic and biodegradable chitosan sponges fabricated for oil/water separation. J. Environ. Chem. Eng. 9, 106027 (2021). https://doi.org/10.1016/j.jece.2021.106027

    Article  Google Scholar 

  80. Yu, M.D., Mishra, D., Cui, Z.Y., Wang, X., Lu, Q.Y.: Recycling papermill waste lignin into recyclable and flowerlike composites for effective oil/water separation. Compos. Part B 216, 108884 (2021). https://doi.org/10.1016/j.compositesb.2021.108884

    Article  Google Scholar 

  81. Oribayo, O., Feng, X.S., Rempel, G.L., Pan, Q.M.: Synthesis of lignin-based polyurethane/graphene oxide foam and its application as an absorbent for oil spill clean-ups and recovery. Chem. Eng. J. 323, 191–202 (2017). https://doi.org/10.1016/j.cej.2017.04.054

    Article  Google Scholar 

  82. Bertella, S., Luterbacher, J.S.: Lignin functionalization for the production of novel materials. Trends Chem. 5, 440–453 (2020). https://doi.org/10.1016/j.trechm.2020.03.001

    Article  Google Scholar 

  83. Zhang, N., Li, Z., Xiao, Y., Pan, Z., Jia, P., Feng, G., Bao, C., Zhou, Y., Hua, L.: Lignin-based phenolic resin modified with whisker silicon and its application. J. Bioresour. Bioprod. 5, 67–77 (2020). https://doi.org/10.1016/j.jobab.2020.03.008

    Article  Google Scholar 

  84. Xia, Z., Li, J., Zhang, J., Zhang, X., Zhang, J.: Processing and valorization of cellulose, lignin and lignocellulose using ionic liquids. J. Bioresour. Bioprod. 5, 79–95 (2020). https://doi.org/10.1016/j.jobab.2020.04.001

    Article  Google Scholar 

  85. Zhou, W., Chen, F., Zhang, H., Wang, J.: Preparation of a polyhydric aminated lignin and its use in the preparation of polyurethane film. J. Wood Chem. Technol. 37, 323–333 (2017). https://doi.org/10.1080/02773813.2017.1299185

    Article  Google Scholar 

  86. Chen, S., Shen, S., Yan, X., Mi, J., Wang, G., Zhang, J., Zhou, Y.: Synthesis of surfactants from alkali lignin for enhanced oil recovery. J. Dispersion Sci. Technol. 37, 1574–1580 (2015). https://doi.org/10.1080/01932691.2015.1118703

    Article  Google Scholar 

  87. Chio, C.L., Sain, M., Qin, W.S.: Lignin utilization: a review of lignin depolymerization from various aspects. Renew. Sustain. Energy Rev. 107, 232–249 (2019). https://doi.org/10.1016/j.rser.2019.03.008

    Article  Google Scholar 

  88. Kazzaz, A.E., Feizia, Z.H., Fatehi, P.: Grafting strategies for hydroxy groups of lignin for producing materials. Green Chem. 21, 5714–5752 (2019). https://doi.org/10.1039/C9GC02598G

    Article  Google Scholar 

  89. Huang, D., Li, R., Xu, P., Li, T., Deng, R., Chen, S., Zhang, Q.: The cornerstone of realizing lignin value-addition: Exploiting the native structure and properties of lignin by extraction methods. Chem. Eng. J. 402, 126237 (2020). https://doi.org/10.1016/j.cej.2020.126237

    Article  Google Scholar 

  90. Chen, C.Z., Li, F.F., Zhang, Y.R., Wang, B.X., Fan, Y.M., Wang, X.L., Sun, R.K.: Compressive, ultralight and fire-resistant lignin-modified graphene aerogels as recyclable absorbents for oil and organic solvents. Chem. Eng. J. 350, 173–180 (2018). https://doi.org/10.1016/j.cej.2018.05.189

    Article  Google Scholar 

  91. Meng, Y., Liu, T., Yu, S., Cheng, Y., Lu, J., Wang, H.: A lignin-based carbon aerogel enhanced by graphene oxide and application in oil/water separation. Fuel 15, 118376 (2020). https://doi.org/10.1016/j.fuel.2020.118376

    Article  Google Scholar 

  92. Sun, H.D., Liu, Z.M., Liu, K.Y., Gibril, M.E., Kong, F.G., Wang, S.J.: Lignin-based superhydrophobic melamine resin sponges and their application in oil/water separation. Ind. Crops Prod. 170, 113798 (2021). https://doi.org/10.1016/j.indcrop.2021.113798

    Article  Google Scholar 

  93. Yue, Y.Y., Wang, Y., Li, J.Y., Cheng, W.L., Han, G.P., Lu, T., Huang, C.B., Wu, Q.L., Jiang, J.C.: High strength and ultralight lignin-mediated fire-resistant aerogel for repeated oil/water separation. Carbon 193, 285–297 (2022). https://doi.org/10.1016/j.carbon.2022.03.015

    Article  Google Scholar 

  94. Vannarath, A., Thalla, A.K.: Synthesis and characterisation of an ultra-light, hydrophobic and flame-retardant robust lignin-carbon foam for oil/water separation. J. Cleaner Prod. 325, 129263 (2021). https://doi.org/10.1016/j.jclepro.2021.129263

    Article  Google Scholar 

  95. Zhang, S.G., Yang, M.C., Meng, S.Y., Yang, Y.C., Li, Y.C., Tong, Z.H.: Biowaste-derived, nanohybrid-reinforced double-function slow-release fertilizer with metal-adsorptive function. Chem. Eng. J. 450, 138084 (2022). https://doi.org/10.1016/j.cej.2022.138084

    Article  Google Scholar 

  96. Matveeva, V.G., Bronstein, L.M.: From renewable biomass to nanomaterials: does biomass origin matter? Prog. Mater. Sci. 130, 100999 (2022). https://doi.org/10.1016/j.pmatsci.2022.100999

    Article  Google Scholar 

  97. Li, L., Li, B., Zhang, J.: Dopamine-mediated fabrication of ultralight graphene aerogels with low volume shrinkage. J. Mater. Chem. A 4, 512–518 (2016). https://doi.org/10.1039/C5TA08829A

    Article  Google Scholar 

  98. Liu, Y., Peng, Y., Zhang, T., Qiu, F., Yuan, D.: Superhydrophobic, ultralight and flexible biomass carbon aerogels derived from sisal fibers for highly efficient oil/water separation. Cellulose 25, 3067–3078 (2018). https://doi.org/10.1007/s10570-018-1774-7

    Article  Google Scholar 

  99. Lv, Y., Gan, L., Liu, M., Xiong, W., Xu, Z., Zhu, D.: A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes. J. Power Sources 209, 152–157 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.089

    Article  Google Scholar 

  100. Ma, Q., Yu, Y., Sindoro, M., Fane, A.G., Wang, R., Zhang, H.: Carbon-based functional materials derived from waste for water remediation and energy storage. Adv. Mater. 29, 1605361 (2017). https://doi.org/10.1002/adma.201605361

    Article  Google Scholar 

  101. Nguyen, S.T., Feng, J., Le, N.T., Le, A.T.T., Hoang, N., Tan, V.B.C., Duong, H.M.: Cellulose aerogel from paper waste for crude oil spill cleaning. Ind. Eng. Chem. Res. 52, 18386–18391 (2013). https://doi.org/10.1021/ie4032567

    Article  Google Scholar 

  102. Akhlamadi, G., Goharshadi, E.K.: Sustainable and superhydrophobic cellulose nanocrystal-based aerogel derived from waste tissue paper as a sorbent for efficient oil/water separation. Process Saf. Environ. Prot. 154, 155–167 (2021). https://doi.org/10.1016/j.psep.2021.08.009

    Article  Google Scholar 

  103. Li, L., Li, B., Sun, H., Zhang, J.: Compressible and conductive carbon aerogels from waste paper with exceptional performance for oil/water separation. J. Mater. Chem. A 5, 14858–14864 (2017). https://doi.org/10.1039/C7TA03511J

    Article  Google Scholar 

  104. Bi, H.C., Huang, X., Wu, X., Cao, X.H., Tan, C.L., Yin, Z.Y., Lu, X.H., Sun, L.T., Zhang, H.: Carbon microbelt aerogel prepared by waste paper: an efficient and recyclable sorbent for oils and organic solvents. Small 10, 3544–3550 (2014). https://doi.org/10.1002/smll.201303413

    Article  Google Scholar 

  105. Han, S.J., Sun, Q.F., Zheng, H.H., Li, J.P., Jin, C.D.: Green and facile fabrication of carbon aerogels from cellulose-based waste newspaper for solving organic pollution. Carbohydr. Polym. 136, 95–100 (2016). https://doi.org/10.1016/j.carbpol.2015.09.02

    Article  Google Scholar 

  106. Li, N., Yue, Q.Y., Gao, B.Y., Xu, X., Su, R.D., Yu, B.J.: One-step synthesis of peanut hull/graphene aerogel for highly efficient oil/water separation. J. Cleaner Prod. 207, 764–771 (2019). https://doi.org/10.1016/j.jclepro.2018.10.038

    Article  Google Scholar 

  107. Jing, F., Ding, J.C., Zhang, T., Yang, D.Y., Qiu, F.X., Chen, Q.Y., Xu, J.C.: Flexible, versatility and superhydrophobic biomass carbon aerogels derived from corn bracts for efficient oil/water separation. Food Bioprod. Process. 115, 134–142 (2019). https://doi.org/10.1016/j.fbp.2019.03.010

    Article  Google Scholar 

  108. Huang, J.W., Li, D.D., Huang, L.H., Tan, S.A., Liu, T.: Bio-based aerogel based on bamboo, waste paper, and reduced graphene oxide for oil/water separation. Langmuir 38, 3064–3075 (2022). https://doi.org/10.1021/acs.langmuir.1c02821

    Article  Google Scholar 

  109. Baig, N., Alghunaimi, F.I., Saleh, T.A.: Hydrophobic and oleophilic carbon nanofiber impregnated styrofoam for oil and water separation: a green technology. Chem. Eng. J. 360, 1613–1622 (2019). https://doi.org/10.1016/j.cej.2018.10.042

    Article  Google Scholar 

  110. Zhang, Z.T., Dai, G.C., Liu, Y., Fan, W.W., Yang, K.F., Li, Z.J.: A reusable, biomass-derived, and pH-responsive collagen fiber-based oil absorbent material for effective separation of oil-in-water emulsions. Colloids Surf. A 633, 127906 (2022). https://doi.org/10.1016/j.colsurfa.2021.127906

    Article  Google Scholar 

  111. Zhai, Z.Z., Zheng, Y.X., Du, T.M., Tian, Z.S., Ren, B., Xu, Y.L., Wang, S.S., Zhang, L.H., Liu, Z.F.: Green and sustainable carbon aerogels from starch for supercapacitors and oil/water separation. Ceram. Int. 47, 22080–22087 (2021). https://doi.org/10.1016/j.ceramint.2021.04.229

    Article  Google Scholar 

  112. Kuang, Y.D., Chen, C.J., Chen, G., Pei, Y., Pastel, G., Jia, C., Song, J.W., Mi, R.Y., Yang, B., Das, S., Hu, L.B.: Bioinspired solar-heated carbon absorbent for efficient cleanup of highly viscous crude oil. Adv. Funct. Mater. 29, 1900162 (2019). https://doi.org/10.1002/adfm.201900162

    Article  Google Scholar 

  113. Mahari, W.A.W., Waiho, K., Fazhan, H., Necibi, M.C.: Progress in valorisation of agriculture, aquaculture and shellfish biomass into biochemicals and biomaterials towards sustainable bioeconomy. Chemosphere 291, 133036 (2022). https://doi.org/10.1016/j.chemosphere.2021.133036

    Article  Google Scholar 

  114. Yong, J.L., Huo, J.L., Chen, F., Yang, Q.: Oil/water separation based on the natural materials with super-wettability: recent advances. Phys. Chem. Chem. Phys. 20, 25140–25163 (2018). https://doi.org/10.1039/c8cp04009e

    Article  Google Scholar 

  115. Wang, N., Deng, Z.W.: Synthesis of magnetic, durable and superhydrophobic carbon sponges for oil/water separation. Mater. Res. Bull. 115, 19–26 (2019). https://doi.org/10.1016/j.materresbull.2019.03.007

    Article  Google Scholar 

  116. Nematian, M., Keske, C., Ng’ombe, J.N.: A techno-economic analysis of biochar production and the bioeconomy for orchard biomass. Waste Manag. 135, 467–477 (2021). https://doi.org/10.1016/j.wasman.2021.09.014

    Article  Google Scholar 

  117. Harsono, S.S., Grundman, P., Lau, L.H., Hansen, A., Salleh, M.A.M.: Energy balances, greenhouse gas emissions and economics of biochar production from palm oil empty fruit bunches. Resour. Conserv. Recycl. 77, 108–115 (2013). https://doi.org/10.1016/j.resconrec.2013.04.005

    Article  Google Scholar 

  118. Osman, A.I.: Mass spectrometry study of lignocellulosic biomass combustion and pyrolysis with NOx removal. Renew. Energy 146, 484–496 (2020). https://doi.org/10.1016/j.renene.2019.06.155

    Article  Google Scholar 

  119. Zhang, H., Zhao, T., Chen, Y., Hu, X., Xu, Y.: A sustainable nanocellulose-based superabsorbent from kapok fiber with advanced oil absorption and recyclability. Carbohydr. Polym. 278, 118948 (2022). https://doi.org/10.1016/j.carbpol.2021.118948

    Article  Google Scholar 

  120. Thinkohkaew, K., Rodthongkum, N., Ummartyotin, S.: Coconut husk (Cocos nucifera) cellulose reinforced poly vinyl alcohol-based hydrogel composite with control-release behavior of methylene blue. J. Mater. Res. Technol. 9, 6602–6611 (2020). https://doi.org/10.1016/j.jmrt.2020.04.051

    Article  Google Scholar 

  121. Tian, F., Yang, Y., Wang, X.L., An, W.L., Zhao, X., Xu, S.M., Wang, Y.Z.: From waste epoxy resins to efficient oil/water separation materials via a microwave assisted pore-forming strategy. Mater. Horiz. 6, 1733–1739 (2019). https://doi.org/10.1039/C9MH00541B

    Article  Google Scholar 

  122. Kazaka, O., Eker, Y.R., Bingol, H., Tora, A.: Novel preparation of activated carbon by cold oxygen plasma treatment combined with pyrolysis. Chem. Eng. J. 325, 564–575 (2017). https://doi.org/10.1016/j.cej.2017.05.107

    Article  Google Scholar 

  123. Roy, P., Dias, G.: Prospects for pyrolysis technologies in the bioenergy sector: a review. Renewable Sustainable Energy Rev. 77, 59–69 (2017). https://doi.org/10.1016/j.rser.2017.03.136

    Article  Google Scholar 

  124. Wang, T.T., Li, G.L., Yang, K.Q., Zhang, X.Y., Wang, K., Cai, J.J., Zheng, J.Y.: Enhanced ammonium removal on biochar from a new forestry waste by ultrasonic activation: characteristics, mechanisms and evaluation. Sci. Total Environ. 778, 146295 (2021). https://doi.org/10.1016/j.scitotenv.2021.146295

    Article  Google Scholar 

  125. Xu, Y.H., Zhang, Z.D., Geng, X.F., Jin, J., Iqbal, M., Han, A., Ding, B., Liu, J.F.: Smart carbon foams with switchable wettability for fast oil recovery. Carbon 149, 242–247 (2019). https://doi.org/10.1016/j.carbon.2019.04.039

    Article  Google Scholar 

Download references

Acknowledgements

The research work is funded by the Zhenjiang Key Research and Development Program (GY2021004), the Opening Project of Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology (CJSP202205), Innovation and Practice fund of Jiangsu University Industrial Center (ZXJG202208), Jiangsu Collaborative Innovation Center for Water Treatment Technology and Materials.

Funding

Zhenjiang Key Research and Development Program, GY2021004, Xiaomeng Lv, Opening Project of Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, CJSP202205, Jun Liu, Jiangsu Collaborative Innovation Center for Water Treatment Technology and Materials, Innovation and Practice fund of Jiangsu University Industrial Center, ZXJG202208, Yun Zhang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Liu or Xiaomeng Lv.

Ethics declarations

Conflict of interest

Authors have no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Sam, E.K., Liu, J. et al. Biomass-Based/Derived Value-Added Porous Absorbents for Oil/Water Separation. Waste Biomass Valor 14, 3147–3168 (2023). https://doi.org/10.1007/s12649-023-02112-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-023-02112-9

Keywords

Navigation