Skip to main content
Log in

Nature-inspired Polysaccharide-based Aerogel for Oil–water Separation

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Oily wastewater pollution is an urgent problem to be solved. Complicated preparation process, toxic hydrophobic modifiers and poor mechanical properties limit the application of polysaccharide-based aerogel in oil–water separation. Inspired by the Strider’s Leg structure in nature, an eco-friendly and reusable polysaccharide-based composite aerogel was prepared by hydrophobic modification with zein for efficient oil–water separation. The introduction of hydrophobic zein into aerogel by simple immersion method without the use of toxic modifiers can build micro/nanostructures similar to the villi on a water strider’s leg to increase the surface roughness and the hydrophobicity. And three degradable, non-toxic and economical polysaccharides including chitosan, carboxylated cellulose nanofibers and starch were used to construct aerogel skeleton, endowing aerogel with porous structures and good mechanical properties. The resulting composite aerogel (ZOMA) showed low density (0.11 g/cm3), good oil absorption capacity (9 g/g), high flux oil–water separation (5595 L m−2 h−1) and excellent oil–water separation performance (99.8%). And ZOMA still had good tensile strength and elasticity after 50 compression cycles. After 10 cycles of absorption and desorption, ZOMA aerogel remained still more than 90% of its initial absorption capacity. This study provides new insight for the design of environmentally friendly and efficient adsorbents for oil–water separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The data that support the findings of this article are avaible in Journal of Bionic Engineering webstite (Springer) with the DOI of the article.

References

  1. Yang, Y., Li, X. J., Zheng, X., Chen, Z. Y., Zhou, Q. F., & Chen, Y. (2018). 3D-printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation. Advanced Materials, 30, 1704912.

    Article  Google Scholar 

  2. Fu, Y., & Guo, Z. G. (2022). Natural polysaccharide-based aerogels and their applications in oil–water separations: A review. Journal of Materials Chemistry A, 10, 8129–8158.

    Article  Google Scholar 

  3. Xu, C. L., Luo, Y. T., Zhou, L., Bi, Y. W., & Sun, H. (2022). Fabrication of durable superhydrophobic stainless steel mesh with nano/micro flower-like morphologies for self-cleaning and efficient oil/water separation. Journal of Bionic Engineering, 19, 1615–1624.

    Article  Google Scholar 

  4. Tian, Y. L., Feng, J. K., Cai, Z. X., Chao, J. Q., Zhang, D. W., Cui, Y. X., & Chen, F. (2021). Dodecyl mercaptan functionalized copper mesh for water repellence and oil-water separation. Journal of Bionic Engineering, 18, 887–899.

    Article  Google Scholar 

  5. Wang, Y. X., Su, Y. H., Wang, W. L., Fang, Y., Riffat, S. B., & Jiang, F. T. (2019). The advances of polysaccharide-based aerogels: Preparation and potential application. Carbohydrate Polymers, 226, 115242.

    Article  Google Scholar 

  6. Ziegler, C., Wolf, A., Liu, W., Herrmann, A. K., Gaponik, N., & Eychmuller, A. (2017). Modern inorganic aerogels. Angewandte Chemie International Edition, 56, 13200–13221.

    Article  Google Scholar 

  7. Wang, W., Dong, C. X., Liu, S. R., Zhang, Y. H., Kong, X. Q., Wang, M., Ding, C., Liu, T. Y., Shen, H. L., & Bi, H. C. (2023). Super-hydrophobic cotton aerogel with ultra-high flux and high oil retention capability for efficient oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 657, 130572.

    Article  Google Scholar 

  8. Wang, N. N., Wang, H., Wang, Y. Y., Wei, Y. H., Si, J. Y., Yuen, A. C. Y., Xie, J. S., Yu, B., Zhu, S. E., Lu, H. D., Yang, W., Chan, Q. N., & Yeoh, G. H. (2019). Robust, lightweight, hydrophobic, and fire-retarded polyimide/MXene aerogels for effective oil/water separation. ACS Applied Materials and Interfaces, 11, 40512–40523.

    Article  Google Scholar 

  9. Delbianco, M., & Seeberger, P. H. (2020). Materials science based on synthetic polysaccharides. Materials Horizons, 7, 963–969.

    Article  Google Scholar 

  10. Yang, W.-J., Yuen, A. C. Y., Li, A., Lin, B., Chen, T. B. Y., Yang, W., Lu, H.-D., & Yeoh, G. H. (2019). Recent progress in bio-based aerogel absorbents for oil/water separation. Cellulose, 26, 6449–6476.

    Article  Google Scholar 

  11. Zhang, Y., Yin, M. L., Li, L., Fan, B. J., Liu, Y., Li, R., Ren, X. H., Huang, T. S., & Kim, I. S. (2020). Construction of aerogels based on nanocrystalline cellulose and chitosan for high efficient oil/water separation and water disinfection. Carbohydrate Polymers, 243, 116461.

    Article  Google Scholar 

  12. Qin, H. F., Zhang, Y. F., Jiang, J. G., Wang, L. L., Song, M. Y., Bi, R., Zhu, P. H., & Jiang, F. (2021). Multifunctional superelastic cellulose nanofibrils aerogel by dual ice-templating assembly. Advanced Functional Materials, 31, 2106269.

    Article  Google Scholar 

  13. Zhang, M. L., Jiang, S., Han, F. Y., Li, M. M., Wang, N., & Liu, L. F. (2021). Anisotropic cellulose nanofiber/chitosan aerogel with thermal management and oil absorption properties. Carbohydrate Polymers, 264, 118033.

    Article  Google Scholar 

  14. Dong, T., Tian, N., Xu, B., Huang, X. H., Chi, S., Liu, Y. M., Lou, C.-W., & Lin, J.-H. (2022). Biomass poplar catkin fiber-based superhydrophobic aerogel with tubular-lamellar interweaved neurons-like structure. Journal of Hazardous Materials, 429, 128290.

    Article  Google Scholar 

  15. Mulyadi, A., Zhang, Z., & Deng, Y. (2016). Fluorine-free oil absorbents made from cellulose nanofibril aerogels. ACS Applied Materials and Interfaces, 8, 2732–2740.

    Article  Google Scholar 

  16. Kasaai, M. R. (2018). Zein and zein-based nano-materials for food and nutrition applications: A review. Trends in Food Science & Technology, 79, 184–197.

    Article  Google Scholar 

  17. Yu, X., Li, C. M., Tian, H. F., Yuan, L., Xiang, A. M., Li, J. L., Wang, C. Y., & Rajulu, A. V. (2020). Hydrophobic cross-linked zein-based nanofibers with efficient air filtration and improved moisture stability. Chemical Engineering Journal, 396, 125373.

    Article  Google Scholar 

  18. Gao, X. F., & Jiang, L. (2004). Water-repellent legs of water striders. Nature, 432(7013), 36–36.

    Article  Google Scholar 

  19. Zhu, F. (2019). Starch based aerogels: Production, properties and applications. Trends in Food Science & Technology, 89, 1–10.

    Article  Google Scholar 

  20. Zhao, J., Xi, X. T., Ouyang, H., Yang, J. Y., Wang, Y., Yi, L. F., Song, D. Y., Song, Y. J., & Zhao, L. J. (2021). Acidic and alkaline gas sensitive and self-healing chitosan aerogel based on electrostatic interaction. Carbohydrate Polymers, 272, 118445.

    Article  Google Scholar 

  21. Wang, H., Kong, L. Y., & Ziegler, G. R. (2019). Fabrication of starch-nanocellulose composite fibers by electrospinning. Food Hydrocolloids, 90, 90–98.

    Article  Google Scholar 

  22. Zhang, F., Chi, H., Wang, C., Wang, X. Y., Wang, Y. C., Zhang, H., Xu, K., Bai, Y. G., & Wang, P. X. (2021). Multifunctional starch-based material for contaminated emulsions separation and purification. Carbohydrate Polymers, 269, 118354.

    Article  Google Scholar 

  23. Wang, Y., & Padua, G. W. (2012). Nanoscale characterization of zein self-assembly. Langmuir, 28, 2429–2435.

    Article  Google Scholar 

  24. Ma, X. T., Lou, Y., Chen, X.-B., Shi, Z., & Xu, Y. (2019). Multifunctional flexible composite aerogels constructed through in-situ growth of metal-organic framework nanoparticles on bacterial cellulose. Chemical Engineering Journal, 356, 227–235.

    Article  Google Scholar 

  25. Jimenez-Saelices, C., Seantier, B., Cathala, B., & Grohens, Y. (2017). Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties. Carbohydrate Polymers, 157, 105–113.

    Article  Google Scholar 

  26. Zhang, Z., Tan, J. W., Gu, W. H., Zhao, H. Q., Zheng, J., Zhang, B. S., & Ji, G. (2020). Cellulose-chitosan framework/polyailine hybrid aerogel toward thermal insulation and microwave absorbing application. Chemical Engineering Journal, 395, 125190.

    Article  Google Scholar 

  27. Huang, J. Y., Li, D. W., Zhao, M., Ke, H. Z., Mensah, A., Lv, P., Tian, X. J., & Wei, Q. F. (2019). Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors. Chemical Engineering Journal, 373, 1357–1366.

    Article  Google Scholar 

  28. Zhang, G. H., Liu, Y., Chen, C., Long, L., He, J. S., Tian, D., Luo, L., Yang, G., Zhang, X. H., & Zhang, Y. Z. (2022). MOF-based cotton fabrics with switchable superwettability for oil–water separation. Chemical Engineering Science, 256, 117695.

    Article  Google Scholar 

  29. Liu, Q., Yu, H. H., Zeng, F. M., Li, X., Sun, J., Li, C., Lin, H., & Su, Z. M. (2021). HKUST-1 modified ultrastability cellulose/chitosan composite aerogel for highly efficient removal of methylene blue. Carbohydrate Polymers, 255, 117402.

    Article  Google Scholar 

  30. Li, Z. D., Zhong, L., Zhang, T., Qiu, F. X., Yue, X. J., & Yang, D. Y. (2019). Sustainable, flexible, and superhydrophobic functionalized cellulose aerogel for selective and versatile oil/water separation. ACS Sustainable Chemistry & Engineering, 7, 9984–9994.

    Article  Google Scholar 

  31. He, J., Zhao, H. Y., Li, X. L., Su, D., Zhang, F. R., Ji, H. M., & Liu, R. (2018). Superelastic and superhydrophobic bacterial cellulose/silica aerogels with hierarchical cellular structure for oil absorption and recovery. Journal of Hazardous Materials, 346, 199–207.

    Article  Google Scholar 

  32. Zanini, M., Lavoratti, A., Lazzari, L. K., Galiotto, D., Pagnocelli, M., Baldasso, C., & Zattera, A. J. (2016). Producing aerogels from silanized cellulose nanofiber suspension. Cellulose, 24, 769–779.

    Article  Google Scholar 

  33. Huang, J. K., & Yan, Z. F. (2018). Adsorption mechanism of oil by resilient graphene aerogels from oil-water emulsion. Langmuir, 34, 1890–1898.

    Article  Google Scholar 

  34. Wang, R., Zhu, L., Zhu, X., Yan, Z. C., Xia, F. J., Zhang, J. Q., Liu, X. L., Yu, J. P., & Xue, Q. Z. (2023). A super-hydrophilic and underwater super-oleophobic membrane with robust anti-fouling performance of high viscous crude oil for efficient oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 658, 130662.

    Article  Google Scholar 

  35. Dilamian, M., & Noroozi, B. (2021). Rice straw agri-waste for water pollutant adsorption: Relevant mesoporous super hydrophobic cellulose aerogel. Carbohydrate Polymers, 251, 117016.

    Article  Google Scholar 

  36. Chen, X. M., Weibel, J. A., & Garimella, S. V. (2016). Continuous oil–water separation using polydimethylsiloxane-functionalized melamine sponge. Industrial & Engineering Chemistry Research, 55, 3596–3602.

    Article  Google Scholar 

  37. Saini, H., Otyepková, E., Schneemann, A., Zbořil, R., Otyepka, M., Fischer, R. A., & Jayaramulu, K. (2022). Hierarchical porous metal–organic framework materials for efficient oil–water separation. Journal of Materials Chemistry A, 10, 2751–2785.

    Article  Google Scholar 

  38. Horvat, G., Fajfar, T., Perva Uzunalić, A., Knez, Ž, & Novak, Z. (2016). Thermal properties of polysaccharide aerogels. Journal of Thermal Analysis and Calorimetry, 127, 363–370.

    Article  Google Scholar 

  39. Jiang, S. H., Uch, B., Agarwal, S., & Greiner, A. (2017). Ultralight, thermally insulating, compressible polyimide fiber assembled sponges. ACS Applied Materials and Interfaces, 9, 32308–32315.

    Article  Google Scholar 

  40. Wang, H. L., Zhang, X., Wang, N., Li, Y., Feng, X., Huang, Y., Zhao, C. S., Liu, Z. L., Fang, M. H., Ou, G., Gao, H. J., Li, X. Y., & Wu, H. (2017). Ultralight, scalable, and high-temperature–resilientceramic nanofiber sponges. Science advances, 3(6), e1603170.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Nature Science Foundation of China (no. 51735013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shulun Ai or Zhiguang Guo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest/competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 587 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Ai, S., Guo, Z. et al. Nature-inspired Polysaccharide-based Aerogel for Oil–water Separation. J Bionic Eng 20, 1956–1966 (2023). https://doi.org/10.1007/s42235-023-00370-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-023-00370-w

Keywords

Navigation