Skip to main content
Log in

Proximate Composition, Antioxidant Activity, Mineral and Lipid Profiling of Spent Coffee Grounds Collected in Morocco Reveal a Great Potential of Valorization

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Spent coffee grounds (SCGs) are a great pollution hazard towards the environment. However, SCGs may offer important opportunities of valorization. Here, we aimed at assessing SCGs valorization potential through physicochemical characterization.

Methods

Proximate composition and SCG oil physicochemical traits were determined using official analytical methods. Mineral profiling was performed using inductively coupled plasma optical emission spectrometry. Total phenolic (TPC) and flavonoid content (TFC) along with antioxidant activity were also determined.

Results

Proximate composition varied greatly among samples: Oil content (8.58 ± 0.01–18.55 ± 0.01%), protein content (13.87 ± 1.12–16.12 ± 1.30%), ash content (2.16 ± 0.01–3.61 ± 0.01%), and carbohydrates content (61.76 ± 1.21–70.37 ± 1.21%). Major elements were K (8323.23 ± 974.00), Ca (6181.18 ± 500.67), and Mg (2526.51 ± 204.64 mg kg−1). SCGs oil was rich in linoleic acid (43.20 ± 2.19%), palmitic acid (31.78 ± 2.02%), and oleic acid (12.68 ± 1.15%). Likewise, β-sitosterol was the most abundant sterol (44.70 ± 0.01%). SCGs contained important TFC (up to 32.18 ± 0.41 mg QE g–1) and TPC (up to 57.48 ± 0.10 mg GAE g–1) with great antioxidant activity as revealed by ABTS (up to 2.22 ± 0.01 mmol TE g−1), DPPH (up to 92.12 ± 0.22%) and FRAP (up to 93.94 ± 6.19 mg TE g−1) as well as DPPH IC50 (up to 53.73 ± 1.03 µg mL−1).

Conclusion

SCGs, given their investigated physicochemical properties, present promising valorization opportunities for environment, food industry, pharmaceutical fields and agricultural sector.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Madiga Bala, D., Padigapati Venkata, N.S., Yannam, P.: Global and regional trading blocs of coffee and tea: outlook, trading signals, and policies. World Food Policy (2020). https://doi.org/10.1002/wfp2.12018

    Article  Google Scholar 

  2. ICO: International Coffee Organization—trade statistics tables. https://www.ico.org/trade_statistics.asp?section=Statistics (2020). Accessed 26 June 2020

  3. Murthy, P.S., MadhavaNaidu, M.: Sustainable management of coffee industry by-products and value addition—a review. Resour. Conserv. Recycl. (2012). https://doi.org/10.1016/j.resconrec.2012.06.005

    Article  Google Scholar 

  4. Preethu, D.C., Srinivasamurthy, C.A., Vasanthi, B.G.: Maturity indices as an index to evaluate the quality of compost of coffee waste blended with other organic wastes. In: Proceedings of the International Conference on Sustainable Solid Waste Management. pp. 270–275. (2007)

  5. Fernandes, A.S., Mello, F.V.C., Thode Filho, S., Carpes, R.M., Honório, J.G., Marques, M.R.C., Felzenszwalb, I., Ferraz, E.R.A.: Impacts of discarded coffee waste on human and environmental health. Ecotoxicol. Environ. Saf. (2017). https://doi.org/10.1016/j.ecoenv.2017.03.011

    Article  Google Scholar 

  6. Atabani, A.E., Al-Rubaye, O.K.: Valorization of spent coffee grounds for biodiesel production: blending with higher alcohols, FT-IR, TGA, DSC, and NMR characterizations. Biomass Conv. Bioref. (2020). https://doi.org/10.1007/s13399-020-00866-z

    Article  Google Scholar 

  7. McNutt, J., He, Q.: Spent coffee grounds: a review on current utilization. J. Ind. Eng. Chem. (2019). https://doi.org/10.1016/j.jiec.2018.11.054

    Article  Google Scholar 

  8. Caetano, N.S., Silva, V.F.M., Melo, A.C., Martins, A.A., Mata, T.M.: Spent coffee grounds for biodiesel production and other applications. Clean. Technol. Environ. Policy (2014). https://doi.org/10.1007/s10098-014-0773-0

    Article  Google Scholar 

  9. Abdullah, M., Bulent Koc, A.: Oil removal from waste coffee grounds using two-phase solvent extraction enhanced with ultrasonication. Renew. Energy (2013). https://doi.org/10.1016/j.renene.2012.08.073

    Article  Google Scholar 

  10. Gammoudi, N., Nagaz, K., Ferchichi, A.: Potential use of spent coffee grounds and spent tea leaves extracts in priming treatment to promote in vitro early growth of salt-and drought-stressed seedlings of Capsicum annuum L. Waste Biomass Valor. (2021). https://doi.org/10.1007/s12649-020-01216-w

    Article  Google Scholar 

  11. Xu, H., Wang, W., Liu, X., Yuan, F., Gao, Y.: Antioxidative phenolics obtained from spent coffee grounds (Coffea arabica L.) by subcritical water extraction. Ind. Crops Prod. (2015). https://doi.org/10.1016/j.indcrop.2015.07.054

    Article  Google Scholar 

  12. López-Barrera, D.M., Vázquez-Sánchez, K., Loarca-Piña, G.F., Campos-Vega, R.: Spent coffee grounds, an innovative source of colonic fermentable compounds, inhibit inflammatory mediators in vitro. Food Chem. (2016). https://doi.org/10.1016/j.foodchem.2016.05.175

    Article  Google Scholar 

  13. Serrano-Gómez, J., López-González, H., Olguín, M.T., Bulbulian, S.: Carbonaceous material obtained from exhausted coffee by an aqueous solution combustion process and used for cobalt (II) and cadmium (II) sorption. J. Environ. Manage. (2015). https://doi.org/10.1016/j.jenvman.2015.03.013

    Article  Google Scholar 

  14. Liu, Y., Tu, Q., Knothe, G., Lu, M.: Direct transesterification of spent coffee grounds for biodiesel production. Fuel (2017). https://doi.org/10.1016/j.fuel.2017.02.094

    Article  Google Scholar 

  15. Barampouti, E.M., Grammatikos, C., Stoumpou, V., Malamis, D., Mai, S.: Emerging synergies on the co-treatment of spent coffee grounds and brewer’s spent grains for ethanol production. Waste Biomass Valor. (2022). https://doi.org/10.1007/s12649-021-01543-6

    Article  Google Scholar 

  16. Passadis, K., Fragoulis, V., Stoumpou, V., Novakovic, J., Barampouti, E.M., Mai, S., Moustakas, K., Malamis, D., Loizidou, M.: Study of valorisation routes of spent coffee grounds. Waste Biomass Valor. (2020). https://doi.org/10.1007/s12649-020-01096-0

    Article  Google Scholar 

  17. Go, A.W., Conag, A.T., Cuizon, D.E.S.: Recovery of sugars and lipids from spent coffee grounds: a new approach. Waste Biomass Valor. (2016). https://doi.org/10.1007/s12649-016-9527-z

    Article  Google Scholar 

  18. Nasruddin, Y., Afdhol, M.K., Haris, F., Amiliana, R.A., Hanafi, A., Ramadhan, I.T.: Production of activated carbon from coffee grounds using chemical and physical activation method. Adv. Sci. Lett. (2017). https://doi.org/10.1166/asl.2017.8822

    Article  Google Scholar 

  19. Ribeiro, J.P., Vicente, E.D., Gomes, A.P., Nunes, M.I., Alves, C., Tarelho, L.A.C.: Effect of industrial and domestic ash from biomass combustion, and spent coffee grounds, on soil fertility and plant growth: experiments at field conditions. Environ. Sci. Pollut. Res. 24, 15270–15277 (2017). https://doi.org/10.1007/s11356-017-9134-y

    Article  Google Scholar 

  20. Adi, A.J., Noor, Z.M.: Waste recycling: utilization of coffee grounds and kitchen waste in vermicomposting. Bioresour. Technol. (2009). https://doi.org/10.1016/j.biortech.2008.07.024

    Article  Google Scholar 

  21. Sant’Anna, V., Biondo, E., Kolchinski, E.M., da Silva, L.F.S., Corrêa, A.P.F., Bach, E., Brandelli, A.: Total polyphenols, antioxidant, antimicrobial and allelopathic activities of spend coffee ground aqueous extract. Waste Biomass Valor. (2017). https://doi.org/10.1007/s12649-016-9575-4

    Article  Google Scholar 

  22. Ciesielczuk, T., Rosik-Dulewska, C., Poluszyńska, J., Miłek, D., Szewczyk, A., Sławińska, I.: Acute toxicity of experimental fertilizers made of spent coffee grounds. Waste Biomass Valor. 9, 2157–2164 (2018). https://doi.org/10.1007/s12649-017-9980-3

    Article  Google Scholar 

  23. Cruz, R., Baptista, P., Cunha, S., Pereira, J.A., Casal, S.: Carotenoids of lettuce (Lactuca sativa L.) grown on soil enriched with spent coffee grounds. Molecules (2012). https://doi.org/10.3390/molecules17021535

    Article  Google Scholar 

  24. Gómez-de la Cruz, F.J., Cruz-Peragón, F., Casanova-Peláez, P.J., Palomar-Carnicero, J.M.: A vital stage in the large-scale production of biofuels from spent coffee grounds: the drying kinetics. Fuel Process. Technol. (2015). https://doi.org/10.1016/j.fuproc.2014.10.012

    Article  Google Scholar 

  25. Martinez-Saez, N., García, A.T., Pérez, I.D., Rebollo-Hernanz, M., Mesías, M., Morales, F.J., Martín-Cabrejas, M.A., del Castillo, M.D.: Use of spent coffee grounds as food ingredient in bakery products. Food Chem. (2017). https://doi.org/10.1016/j.foodchem.2016.07.173

    Article  Google Scholar 

  26. Bijla, L., Aissa, R., Bouzid, H.A., Sakar, E.H., Ibourki, M., Gharby, S.: Spent coffee ground oil as a potential alternative for vegetable oil production: evidence from oil content, lipid profiling, and physicochemical characterization. Biointerface Res. Appl. Chem. (2022). https://doi.org/10.33263/BRIAC125.63086320

    Article  Google Scholar 

  27. Ibourki, M., Azouguigh, F., Jadouali, S.M., Sakar, E.H., Bijla, L., Majourhat, K., Gharby, S., Laknifli, A.: Physical fruit traits, nutritional composition, and seed oil fatty acids profiling in the main date palm (Phoenix dactylifera L.) varieties grown in Morocco. J. Food Qual. (2021). https://doi.org/10.1155/2021/5138043

    Article  Google Scholar 

  28. Raikos, V., Hayes, H., Ni, H.: Aquafaba from commercially canned chickpeas as potential egg replacer for the development of vegan mayonnaise: recipe optimisation and storage stability. Int. J. Food Sci. Technol. (2020). https://doi.org/10.1111/ijfs.14427

    Article  Google Scholar 

  29. Harhar, H., Gharby, S., Guillaume, D., Charrouf, Z.: Effect of argan kernel storage conditions on argan oil quality. Eur. J. Lipid Sci. Technol. (2010). https://doi.org/10.1002/ejlt.200900269

    Article  Google Scholar 

  30. ISO 12228-1: Determination of individual and total sterols contents—gas chromatographic method. Animal and vegetable fats and oils. (2014)

  31. Bobková, A., Hudáček, M., Jakabová, S., Belej, Ľ, Capcarová, M., Čurlej, J., Bobko, M., Árvay, J., Jakab, I., Čapla, J., Demianová, A.: The effect of roasting on the total polyphenols and antioxidant activity of coffee. J. Environ. Sci. Health. (2020). https://doi.org/10.1080/03601234.2020.1724660

    Article  Google Scholar 

  32. Nounah, I., Hajib, A., Harhar, H., Madani, N.E., Gharby, S., Guillaume, D., Charrouf, Z.: Chemical composition and antioxidant activity of Lawsonia inermis seed extracts from Morocco. Nat. Prod. Commun. (2017). https://doi.org/10.1177/1934578X1701200405

    Article  Google Scholar 

  33. Huang, B., Ke, H., He, J., Ban, X., Zeng, H., Wang, Y.: Extracts of Halenia elliptica exhibit antioxidant properties in vitro and in vivo. Food Chem. Toxicol. (2011). https://doi.org/10.1016/j.fct.2010.10.015

    Article  Google Scholar 

  34. Ismaili, S.A., Marmouzi, I., Sayah, K., Harhar, H., Faouzi, A., Gharby, S., Himmi, B., Kitane, S., El Belghiti, M.A.: Chemical analysis and anti-oxidation activities of the Moroccan milk thistle. Moroccan J. Chem. (2016). https://doi.org/10.48317/IMIST.PRSM/morjchem-v4i3.4845

    Article  Google Scholar 

  35. Marmouzi, I., Ali, K., Harhar, H., Gharby, S., Sayah, K., El Madani, N., Cherrah, Y., Faouzi, M.E.A.: Functional composition, antibacterial and antioxidative properties of oil and phenolics from Moroccan Pennisetum glaucum seeds. J. Saudi Soc. Agric. Sci. (2018). https://doi.org/10.1016/j.jssas.2016.04.007

    Article  Google Scholar 

  36. Bhat, A.A., Uppada, S., Achkar, I.W., Hashem, S., Yadav, S.K., Shanmugakonar, M., Al-Naemi, H.A., Haris, M., Uddin, S.: Tight junction proteins and signaling pathways in cancer and inflammation: a functional crosstalk. Front. Physiol. (2019). https://doi.org/10.3389/fphys.2018.01942

    Article  Google Scholar 

  37. Campos-Vega, R., Loarca-Piña, G., Vergara-Castañeda, H.A., Oomah, B.D.: Spent coffee grounds: a review on current research and future prospects. Trends Food Sci. Technol. 45, 24–36 (2015). https://doi.org/10.1016/j.tifs.2015.04.012

    Article  Google Scholar 

  38. Ballesteros, L.F., Teixeira, J.A., Mussatto, S.I.: Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioprocess. Technol. (2014). https://doi.org/10.1007/s11947-014-1349-z

    Article  Google Scholar 

  39. Mussatto, S.I., Machado, E.M.S., Martins, S., Teixeira, J.A.: Production, composition, and application of coffee and its industrial residues. Food Bioprocess. Technol. (2011). https://doi.org/10.1007/s11947-011-0565-z

    Article  Google Scholar 

  40. Tokimoto, T., Kawasaki, N., Nakamura, T., Akutagawa, J., Tanada, S.: Removal of lead ions in drinking water by coffee grounds as vegetable biomass. J. Colloid Interface Sci. 281, 56–61 (2005). https://doi.org/10.1016/j.jcis.2004.08.083

    Article  Google Scholar 

  41. Efthymiopoulos, I., Hellier, P., Ladommatos, N., Nicos, A., Mills-Lamptey, B.: Effect of solvent extraction parameters on the recovery of oil from spent coffee grounds for biofuel production. Waste Biomass Valor. (2019). https://doi.org/10.1007/s12649-017-0061-4

    Article  Google Scholar 

  42. Efthymiopoulos, I., Hellier, P., Ladommatos, N., Kay, A., Mills-Lamptey, B.: Integrated strategies for water removal and lipid extraction from coffee industry residues. Sustain. Energy Technol. Assess. (2018). https://doi.org/10.1016/j.seta.2018.06.016

    Article  Google Scholar 

  43. Al-Hamamre, Z., Foerster, S., Hartmann, F., Kröger, M., Kaltschmitt, M.: Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing. Fuel (2012). https://doi.org/10.1016/j.fuel.2012.01.023

    Article  Google Scholar 

  44. Martinez, E.N.: The drying of spent coffee grounds in a tray drier. Am. J. Biomed. Sci. Res. (2019). https://doi.org/10.34297/AJBSR.2019.06.001074

    Article  Google Scholar 

  45. Haile, M.: Integrated volarization of spent coffee grounds to biofuels. Biofuel Res. J. (2014). https://doi.org/10.18331/BRJ2015.1.2.6

    Article  Google Scholar 

  46. Knapp, B.A., Insam, H.: Recycling of biomass ashes: current technologies and future research needs. In: Insam, H., Knapp, B.A. (eds.) Recycling of Biomass Ashes, pp. 1–16. Springer, Berlin (2011)

    Google Scholar 

  47. Skousen, J., Yang, J.E., Lee, J.-S., Ziemkiewicz, P.: Review of fly ash as a soil amendment. Geosyst. Eng. (2013). https://doi.org/10.1080/12269328.2013.832403

    Article  Google Scholar 

  48. Espuelas, S., Marcelino, S., Echeverría, A.M., del Castillo, J.M., Seco, A.: Low energy spent coffee grounds briquetting with organic binders for biomass fuel manufacturing. Fuel (2020). https://doi.org/10.1016/j.fuel.2020.118310

    Article  Google Scholar 

  49. Vardon, D.R., Moser, B.R., Zheng, W., Witkin, K., Evangelista, R.L., Strathmann, T.J., Rajagopalan, K., Sharma, B.K.: Complete utilization of spent coffee grounds to produce biodiesel, bio-oil, and biochar. ACS Sustain. Chem. Eng. (2013). https://doi.org/10.1021/sc400145w

    Article  Google Scholar 

  50. Silva, M.A., Nebra, S.A., Machado Silva, M.J., Sanchez, C.G.: The use of biomass residues in the Brazilian soluble coffee industry. Biomass Bioenergy (1998). https://doi.org/10.1016/S0961-9534(97)10034-4

    Article  Google Scholar 

  51. Suksiripattanapong, C., Kua, T.A., Arulrajah, A., Maghool, F., Horpibulsuk, S.: Strength and microstructure properties of spent coffee grounds stabilized with rice husk ash and slag geopolymers. Constr. Build Mater. (2017). https://doi.org/10.1016/j.conbuildmat.2017.04.103

    Article  Google Scholar 

  52. Arulrajah, A., Maghoolpilehrood, F., Disfani, M.M., Horpibulsuk, S.: Spent coffee grounds as a non-structural embankment fill material: engineering and environmental considerations. J. Clean. Prod. (2014). https://doi.org/10.1016/j.jclepro.2014.03.010

    Article  Google Scholar 

  53. Stylianou, M., Agapiou, A., Omirou, M., Vyrides, I., Ioannides, I.M., Maratheftis, G., Fasoula, D.: Converting environmental risks to benefits by using spent coffee grounds (SCG) as a valuable resource. Environ. Sci. Pollut. Res. (2018). https://doi.org/10.1007/s11356-018-2359-6

    Article  Google Scholar 

  54. Najdanovic-Visak, V., Lee, F.Y.L., Tavares, M.T., Armstrong, A.: Kinetics of extraction and in situ transesterification of oils from spent coffee grounds. J. Environ. Chem. Eng. (2017). https://doi.org/10.1016/j.jece.2017.04.041

    Article  Google Scholar 

  55. Leal Vieira Cubas, A., Medeiros Machado, M., Tayane Bianchet, R., Alexandrada Costa Hermann, K., Alexsander Bork, J., Angelo Debacher, N., Flores Lins, E., Maraschin, M., Sousa Coelho, D., Helena Siegel Moecke, E.: Oil extraction from spent coffee grounds assisted by non-thermal plasma. Sep. Purif. Technol. (2020). https://doi.org/10.1016/j.seppur.2020.117171

    Article  Google Scholar 

  56. Goh, B.H.H., Ong, H.C., Chong, C.T., Chen, W.-H., Leong, K.Y., Tan, S.X., Lee, X.J.: Ultrasonic assisted oil extraction and biodiesel synthesis of spent coffee ground. Fuel (2020). https://doi.org/10.1016/j.fuel.2019.116121

    Article  Google Scholar 

  57. Muangrat, R., Pongsirikul, I.: Recovery of spent coffee grounds oil using supercritical CO2: extraction optimization and physicochemical properties of oil. Food (2019). https://doi.org/10.1080/19476337.2019.1580771

    Article  Google Scholar 

  58. Sharma, A., Ray, A., Singhal, R.S.: A biorefinery approach towards valorization of spent coffee ground: extraction of the oil by supercritical carbon dioxide and utilizing the defatted spent in formulating functional cookies. Future Foods (2021). https://doi.org/10.1016/j.fufo.2021.100090

    Article  Google Scholar 

  59. Tuntiwiwattanapun, N., Usapein, P., Tongcumpou, C.: The energy usage and environmental impact assessment of spent coffee grounds biodiesel production by an in-situ transesterification process. Energy Sustain. Dev. (2017). https://doi.org/10.1016/j.esd.2017.07.002

    Article  Google Scholar 

  60. Panpraneecharoen, S., Chumanee, S.: Optimization of the oil extraction, study the chemical and physical properties of arabica spent coffee grounds. Sci. Technol. Asia (2020). https://doi.org/10.14456/scitechasia.2020.45

    Article  Google Scholar 

  61. Yordanov, D., Mustafa, Z., Milina, R., Tsonev, Z.: Multi-criteria optimisation process of the oil extraction from spent coffee ground by various solvents. Oxid. Commun. 39, 1478–1487 (2016)

    Google Scholar 

  62. Obruca, S., Petrik, S., Benesova, P., Svoboda, Z., Eremka, L., Marova, I.: Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates. Appl. Microbiol. Biotechnol. (2014). https://doi.org/10.1007/s00253-014-5653-3

    Article  Google Scholar 

  63. Koushki, M., Nahidi, M., Cheraghali, F.: Physico-chemical properties, fatty acid profile and nutrition in palm oil. Arch. Adv. Biosci. (2015). https://doi.org/10.22037/JPS.V6I3.9772

    Article  Google Scholar 

  64. Rathnakumar, K., Osorio-Arias, J.C., Krishnan, P., Martínez-Monteagudo, S.I.: Fractionation of spent coffee ground with tertiary amine extraction. Sep. Purif. Technol. (2021). https://doi.org/10.1016/j.seppur.2021.119111

    Article  Google Scholar 

  65. Nunes, F.M., Coimbra, M.A.: Melanoidins from coffee infusions. Fractionation, chemical characterization, and effect of the degree of roast. J. Agric. Food Chem. (2007). https://doi.org/10.1021/jf063735h

    Article  Google Scholar 

  66. Vázquez-Sánchez, K., Martinez-Saez, N., Rebollo-Hernanz, M., del Castillo, M.D., Gaytán-Martínez, M., Campos-Vega, R.: In vitro health promoting properties of antioxidant dietary fiber extracted from spent coffee (Coffee arabica L.) grounds. Food Chem. (2018). https://doi.org/10.1016/j.foodchem.2018.04.064

    Article  Google Scholar 

  67. Yada, S., Lapsley, K., Huang, G.W.: A review of composition studies of cultivated almonds: macronutrients and micronutrients. J. Food Chem. Anal. (2011). https://doi.org/10.1016/j.jfca.2011.01.007

    Article  Google Scholar 

  68. Roncero, J.M., Álvarez-Ortí, M., Pardo-Giménez, A., Rabadán, A., Pardo, J.E.: Review about non-lipid components and minor fat-soluble bioactive compounds of almond kernel. Foods (2020). https://doi.org/10.3390/foods9111646

  69. Farah, A., Donangelo, C.M.: Phenolic compounds in coffee. Braz. J. Plant Physiol. (2006). https://doi.org/10.1590/S1677-04202006000100003

    Article  Google Scholar 

  70. Cruz, R., Cardoso, M.M., Fernandes, L., Oliveira, M., Mendes, E., Baptista, P., Morais, S., Casal, S.: Espresso coffee residues: a valuable source of unextracted compounds. J. Agric. Food Chem. (2012). https://doi.org/10.1021/jf3018854

    Article  Google Scholar 

  71. Kuan, C.Y., Yuen, K.L., Bhat, R., Liong, M.T.: Physicochemical characterization of alkali treated fractions from corncob and wheat straw and the production of nano fibres. Food Res. Int. (2011). https://doi.org/10.1016/J.FOODRES.2011.06.023

    Article  Google Scholar 

  72. Harhar, H., Gharby, S., Kartah, B., El Monfalouti, H., Guillaume, D., Charrouf, Z.: Influence of argan kernel roasting-time on virgin argan oil composition and oxidative stability. Plant Food Hum. Nutr. (2011). https://doi.org/10.1007/s11130-011-0220-x

    Article  Google Scholar 

  73. Gharby, S., Harhar, H., Farssi, M., Taleb, A.A., Guillaume, D., Laknifli, A.: Influence of roasting olive fruit on the chemical composition and polycyclic aromatic hydrocarbon content of olive oil. OCL (2018). https://doi.org/10.1051/ocl/2018013

    Article  Google Scholar 

  74. Coelho, J.P., Filipe, R.M., Paula Robalo, M., Boyadzhieva, S., Cholakov, G.S., Stateva, R.P.: Supercritical CO2 extraction of spent coffee grounds Influence of co-solvents and characterization of the extracts. J. Supercrit. Fluid. (2020). https://doi.org/10.1016/j.supflu.2020.104825

    Article  Google Scholar 

  75. Chemat, A., Ravi, H.K., Hostequin, A.C., Burney, H., Tomao, V., Fabiano-Tixier, A.-S.: Valorization of spent coffee grounds by 2-methyloxolane as bio-based solvent extraction. Viable pathway towards bioeconomy for lipids and biomaterials. OCL (2022). https://doi.org/10.1051/ocl/2021052

    Article  Google Scholar 

  76. Vu, D.C., Vu, Q.T., Huynh, L., Lin, C.-H., Alvarez, S., Vo, X.T., Nguyen, T.H.D.: Evaluation of fatty acids, phenolics and bioactivities of spent coffee grounds prepared from Vietnamese coffee. Int. J. Food Prop. (2021). https://doi.org/10.1080/10942912.2021.1977657

    Article  Google Scholar 

  77. Carta, G., Murru, E., Banni, S., Manca, C.: Palmitic acid: physiological role, metabolism and nutritional implications. Front. Physiol. (2017). https://doi.org/10.3389/fphys.2017.00902

    Article  Google Scholar 

  78. Wang, X., Wu, J.: Modulating effect of fatty acids and sterols on skin aging. J. Funct. Foods 57, 135–140 (2019). https://doi.org/10.1016/j.jff.2019.04.011

    Article  Google Scholar 

  79. Wee, J.S.H., Chai, A.B., Ho, J.H.: Fabrication of shape memory natural rubber using palmitic acid. J King Saudi Univ. Sci. (2017). https://doi.org/10.1016/j.jksus.2017.09.003

    Article  Google Scholar 

  80. Lopez-Huertas, E.: Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies. Pharmacol. Res. (2010). https://doi.org/10.1016/j.phrs.2009.10.007

    Article  Google Scholar 

  81. Galli, C., Calder, P.C.: Effects of fat and fatty acid intake on inflammatory and immune responses. Ann. Nutr. Metab. (2009). https://doi.org/10.1159/000228999

    Article  Google Scholar 

  82. Guillaume, D., Charrouf, Z.: Argan oil. Altern. Med. Rev. 16, 275–279 (2011)

    Google Scholar 

  83. Gharby, S., Ravi, H.K., Guillaume, D., Vian, M.A., Chemat, F., Charrouf, Z.: 2-methyloxolane as alternative solvent for lipid extraction and its effect on the cactus (Opuntia ficus-indica L.) seed oil fractions. OCL (2020). https://doi.org/10.1051/ocl/2020021

    Article  Google Scholar 

  84. Ando, H., Ryu, A., Hashimoto, A., Oka, M., Ichihashi, M.: Linoleic acid and α-linolenic acid lightens ultraviolet-induced hyperpigmentation of the skin. Arch. Dermatol. Res. (1998). https://doi.org/10.1007/s004030050320

    Article  Google Scholar 

  85. Acevedo, F., Rubilar, M., Scheuermann, E., Cancino, B., Uquiche, E., Garcés, M., Inostroza, K., Shene, C.: Spent coffee grounds as a renewable source of bioactive compounds. J. Biobased Mater. Bioenergy (2013). https://doi.org/10.1166/jbmb.2013.1369

    Article  Google Scholar 

  86. de Melo Pereira, G.V., Soccol, V.T., Pandey, A., Medeiros, A.B.P., Andrade Lara, J.M.R., Gollo, A.L., Soccol, C.R.: Isolation, selection and evaluation of yeasts for use in fermentation of coffee beans by the wet process. Int. J. Food Microbiol. (2014). https://doi.org/10.1016/j.ijfoodmicro.2014.07.008

    Article  Google Scholar 

  87. Cruz, R., Morais, S., Mendes, E., Pereira, J.A., Baptista, P., Casal, S.: Improvement of vegetables elemental quality by espresso coffee residues. Food Chem. (2014). https://doi.org/10.1016/j.foodchem.2013.10.059

    Article  Google Scholar 

  88. Gharby, S., Harhar, H., Bouzoubaa, Z., Asdadi, A., El Yadini, A., Charrouf, Z.: Chemical characterization and oxidative stability of seeds and oil of sesame grown in Morocco. J. Saudi Soc. Agric. Sci. (2017). https://doi.org/10.1016/j.jssas.2015.03.004

    Article  Google Scholar 

  89. Gharby, S., Harhar, H., Kartah, B., El Monfalouti, H.: Analyse chimique et sensorielle de l’huile d’argane. Les Techniques de Laboratoire 6, 11 (2011)

    Google Scholar 

  90. Silalahi, J., Karo, L.K., Sinaga, S.M., Silalahi, Y.C.E.: Composition of fatty acid and identification of lauric acid position in coconut and palm kernel oils. Indones. J. Pharm. Clin. Res. (2018). https://doi.org/10.32734/idjpcr.v1i2.605

    Article  Google Scholar 

  91. Li, J., Liu, J., Sun, X., Liu, Y.: The mathematical prediction model for the oxidative stability of vegetable oils by the main fatty acids composition and thermogravimetric analysis. LWT (2018). https://doi.org/10.1016/j.lwt.2018.05.003

    Article  Google Scholar 

  92. Rigane, G., Ayadi, M., Boukhris, M., Sayadi, S., Bouaziz, M.: Characterisation and phenolic profiles of two rare olive oils from southern Tunisia: Dhokar and Gemri-Dhokar cultivars. J. Sci. Food Agric. (2013). https://doi.org/10.1002/jsfa.5815

    Article  Google Scholar 

  93. Mastro-Durán, R., Borja-Padilla, R.: Actividad antioxidante de esteroles y ácidos orgánicos naturales. Grasas Aceites 44(3), 208–212 (1993)

    Article  Google Scholar 

  94. Nzekoue, F.K., Khamitova, G., Angeloni, S., Sempere, A.N., Tao, J., Maggi, F., Xiao, J., Sagratini, G., Vittori, S., Caprioli, G.: Spent coffee grounds: a potential commercial source of phytosterols. Food Chem. (2020). https://doi.org/10.1016/j.foodchem.2020.126836

    Article  Google Scholar 

  95. Marx, S., Venter, R., Karmee, S.K., Louw, J., Truter, C.: Biofuels from spent coffee grounds: comparison of processing routes. Biofuels (2020). https://doi.org/10.1080/17597269.2020.1793538

    Article  Google Scholar 

  96. Krajcovicova, Z., Vachálková, A., Horváthová, K.: Taraxasterol and beta-sitosterol: new naturally compounds with chemoprotective/chemopreventive effects. Neoplasma 51, 407–414 (2004)

    Google Scholar 

  97. Alappat, L., Valerio, M., Awad, A.B.: Effect of vitamin D and β-sitosterol on immune function of macrophages. Int. Immunopharmacol. (2010). https://doi.org/10.1016/j.intimp.2010.08.003

    Article  Google Scholar 

  98. Klippel, K.F., Hiltl, D.M., Schipp, B., G.B.-P Study Group: A multicentric, placebo-controlled, double-blind clinical trial of β-sitosterol (phytosterol) for the treatment of benign prostatic hyperplasia. Br. J. Urol. 80, 427–432 (1997)

    Article  Google Scholar 

  99. Kritchevsky, D., Chen, S.C.: Phytosterols—health benefits and potential concerns: a review. Nutr. Res. (2005). https://doi.org/10.1016/j.nutres.2005.02.003

    Article  Google Scholar 

  100. Gharby, S., Harhar, H., El Monfalouti, H., Kartah, B., Maata, N., Guillaume, D., Charrouf, Z.: Chemical and oxidative properties of olive and argan oils sold on the Moroccan market. A comparative study. Mediterr. J. Nutr. Metab. (2012). https://doi.org/10.1007/s12349-011-0076-5

    Article  Google Scholar 

  101. Zine, S., Gharby, S., El Hadek, M.: Physicochemical characterization of Opuntia ficus-indica seed oil from Morocco. Biosci. Biotechnol. Res. Asia (2013). https://doi.org/10.13005/bbra

    Article  Google Scholar 

  102. Nebesny, E., Budryn, G.: Antioxidative activity of green and roasted coffee beans as influenced by convection and microwave roasting methods and content of certain compounds. Eur. Food Res. Technol. (2003). https://doi.org/10.1007/s00217-003-0705-4

    Article  Google Scholar 

  103. Engida, A.M., Faika, S., Nguyen-Thi, B.T., Ju, Y.-H.: Analysis of major antioxidants from extracts of Myrmecodia pendans by UV/visible spectrophotometer, liquid chromatography/tandem mass spectrometry, and high-performance liquid chromatography/UV techniques. J. Food Drug Anal. (2015). https://doi.org/10.1016/j.jfda.2014.07.005

    Article  Google Scholar 

  104. Milivojević, A.D., Ćorović, M.M., Simović, M.B., Banjanac, K.M., Blagojević, S.N., Pjanović, R.V., Bezbradica, D.I.: Novel approach for flavonoid esters production: statistically optimized enzymatic synthesis using natural oils and application in cosmetics. Ind. Eng. Chem. Res. (2019). https://doi.org/10.1021/acs.iecr.8b06113

    Article  Google Scholar 

  105. Panusa, A., Zuorro, A., Lavecchia, R., Marrosu, G., Petrucci, R.: Recovery of natural antioxidants from spent coffee grounds. J. Agric. Food Chem. (2013). https://doi.org/10.1021/jf4005719

    Article  Google Scholar 

  106. Ramón-Gonçalves, M., Gómez-Mejía, E., Rosales-Conrado, N., León-González, M.E., Madrid, Y.: Extraction, identification and quantification of polyphenols from spent coffee grounds by chromatographic methods and chemometric analyses. Waste Manage. (2019). https://doi.org/10.1016/j.wasman.2019.07.009

    Article  Google Scholar 

  107. Yoo, D.E., Jeong, K.M., Han, S.Y., Kim, E.M., Jin, Y., Lee, J.: Deep eutectic solvent-based valorization of spent coffee grounds. Food Chem. (2018). https://doi.org/10.1016/j.foodchem.2018.02.096

    Article  Google Scholar 

  108. do Nascimento, K.S., Gasparotto Sattler, J.A., Lauer Macedo, L.F., Serna González, C.V., de Pereira Melo, I.L., da Silva Araújo, E., Granato, D., Sattler, A., de Almeida-Muradian, L.B.: Phenolic compounds, antioxidant capacity and physicochemical properties of Brazilian Apis mellifera honeys. LWT (2018). https://doi.org/10.1016/j.lwt.2018.01.016

    Article  Google Scholar 

  109. Castro, A.C.C.M., Oda, F.B., Almeida-Cincotto, M.G.J., Davanço, M.G., Chiari-Andréo, B.G., Cicarelli, R.M.B., Peccinini, R.G., Zocolo, G.J., Ribeiro, P.R.V., Corrêa, M.A., Isaac, V.L.B., Santos, A.G.: Green coffee seed residue: a sustainable source of antioxidant compounds. Food Chem. (2018). https://doi.org/10.1016/j.foodchem.2017.10.153

    Article  Google Scholar 

  110. Nakkong, K., Tangpromphan, P., Jaree, A.: The design of three-zone simulated moving bed process for the separation of chlorogenic and gallic acids extracted from spent coffee grounds. Waste Biomass Valor. (2021). https://doi.org/10.1007/s12649-020-01160-9

    Article  Google Scholar 

  111. Caballero-Galván, A.S., Restrepo-Serna, D.L., Ortiz-Sánchez, M., Cardona-Alzate, C.A.: Analysis of extraction kinetics of bioactive compounds from spent coffee grounds (Coffea arábica). Waste Biomass Valor. (2018). https://doi.org/10.1007/s12649-018-0332-8

    Article  Google Scholar 

  112. Shahidi, F., Zhong, Y.: Measurement of antioxidant activity. J. Funct. Food (2015). https://doi.org/10.1016/j.jff.2015.01.047

    Article  Google Scholar 

  113. Antolovich, M., Prenzler, P.D., Patsalides, E., McDonald, S., Robards, K.: Methods for testing antioxidant activity. Analyst (2002). https://doi.org/10.1039/B009171P

    Article  Google Scholar 

  114. Andrade, K.S.: Supercritical fluid extraction from spent coffee grounds and coffee husks: antioxidant activity and effect of operational variables on extract composition. Talanta (2012). https://doi.org/10.1016/j.talanta.2011.11.031

    Article  Google Scholar 

  115. Benelli, P., Riehl, C.A., Smânia, A., Jr., Smânia, E.F., Ferreira, S.R.: Bioactive extracts of orange (Citrus sinensis L. Osbeck) pomace obtained by SFE and low pressure techniques: mathematical modeling and extract composition. J. Supercrit. Fluids (2010). https://doi.org/10.1016/j.supflu.2010.08.015

    Article  Google Scholar 

  116. Díaz-Hernández, G.C., Alvarez-Fitz, P., Maldonado-Astudillo, Y.I., Jiménez-Hernández, J., Parra-Rojas, I., Flores-Alfaro, E., Salazar, R., Ramírez, M.: Antibacterial, antiradical and antiproliferative potential of green, roasted, and spent coffee extracts. Appl. Sci. (2022). https://doi.org/10.3390/app12041938

    Article  Google Scholar 

  117. Zuorro, A.: Optimization of polyphenol recovery from espresso coffee residues using factorial design and response surface methodology. Sep. Purif. Technol. 152, 64–69 (2015). https://doi.org/10.1016/j.seppur.2015.08.016

    Article  Google Scholar 

  118. Gigliobianco, M.R., Campisi, B., Vargas Peregrina, D., Censi, R., Khamitova, G., Angeloni, S., Caprioli, G., Zannotti, M., Ferraro, S., Giovannetti, R., Angeloni, C., Lupidi, G., Pruccoli, L., Tarozzi, A., Voinovich, D., Di Martino, P.: Optimization of the extraction from spent coffee grounds using the desirability approach. Antioxidants (2020). https://doi.org/10.3390/antiox9050370

    Article  Google Scholar 

  119. Floegel, A., Kim, D.-O., Chung, S.-J., Koo, S.I., Chun, O.K.: Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food. Compos. Anal. (2011). https://doi.org/10.1016/j.jfca.2011.01.008

    Article  Google Scholar 

  120. Calixto, F., Fernandes, J., Couto, R., Hernández, E.J., Najdanovic-Visak, V., Simões, P.C.: Synthesis of fatty acid methyl estersvia direct transesterification with methanol/carbon dioxide mixtures from spent coffee grounds feedstock. Green Chem. (2011). https://doi.org/10.1039/C1GC15101K

    Article  Google Scholar 

  121. Carocho, M., Ferreira, I.C.F.R.: A review on antioxidants, prooxidants and related controversy: natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol. (2013). https://doi.org/10.1016/j.fct.2012.09.021

    Article  Google Scholar 

  122. Blasi, F., Cossignani, L.: An overview of natural extracts with antioxidant activity for the improvement of the oxidative stability and shelf life of edible oils. Processes (2020). https://doi.org/10.3390/pr8080956

    Article  Google Scholar 

  123. Al-Dhabi, N.A., Ponmurugan, K., Jeganathan, P.M.: Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds. Ultrason. Sonochem. 34, 206–213 (2017). https://doi.org/10.1016/j.ultsonch.2016.05.005

    Article  Google Scholar 

  124. Zeroual, A., Sakar, E.H., Eloutassi, N., Mahjoubi, F., Chaouch, M., Chaqroune, A.: Phytochemical profiling of essential oils isolated using hydrodistillation and microwave methods and characterization of some nutrients in origanum compactum Benth from Central-Northern Morocco. Biointerface Res. Appl. Chem. (2021). https://doi.org/10.33263/BRIAC112.93589371

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. Brahim BIJLA for his kind technical assistance. This work was performed in the frame of the Project Valorization of Medicinal and Aromatic Plants (3rd edition, VPMA3 2021/09), funded by the National Agency of Medicinal and Aromatic Plants (Taounate, Morocco) and National Center for Scientific and Technical Research (CNRST, Morocco).

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by LB, HAB and MI. The first draft of the manuscript was written by LB. Statistical analyses, investigation and visualization, were realized by EHS. Reviewing the entire manuscript and editing were carried out by RA and AL. Methodology, project administration, supervision, validation, writing, reviewing and editing were performed by SG, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Said Gharby.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bijla, L., Ibourki, M., Bouzid, H.A. et al. Proximate Composition, Antioxidant Activity, Mineral and Lipid Profiling of Spent Coffee Grounds Collected in Morocco Reveal a Great Potential of Valorization. Waste Biomass Valor 13, 4495–4510 (2022). https://doi.org/10.1007/s12649-022-01808-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01808-8

Keywords

Navigation