Skip to main content

Advertisement

Log in

Study of Valorisation Routes of Spent Coffee Grounds

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

The energy crisis is an eminent problem that needs to be dealt with urgently. Thus, alternative routes for the production of biofuels are sought. This paper investigated experimentally the possibility of biodiesel and bioethanol production from spent coffee grounds (SCG), aiming at the same time to manage an emerging waste stream.

Methods

SCG have oil and cellulose contents of 12.89% and 9.87%, respectively that may be valorized accordingly. Having chosen the Soxhlet method as an extraction method for oils and fats and by examining two different solvents: methanol as a polar compound and hexane as a nonpolar, the effect of the Soxhlet extraction cycles (time of experiment) and the ratio of solvent to raw material was studied. Furthermore, enzymatic saccharification and alcoholic fermentation were chosen as the means to valorise cellulose.

Results

It was proved that hexane is a more efficient solvent with oil extraction yields ranging from 73.15 to 97.21%. The highest yield was obtained for 20 extraction cycles and solvent to raw material ratio equal to 20. As far as enzymatic hydrolysis is concerned, the maximum saccharification yield for SCG was 44.20% which was achieved under the following conditions: NaOH 0.3 M and CellicCTec2 75 µL/g cellulose.

Conclusion

It is thus technically feasible to recover and extract the oil content from spent coffee grounds as well as to achieve moderate saccharification yields and to this direction an integrated biorefinery was proposed. Estimating the potential of SCG as feedstock for biodiesel and bioethanol production at global level, it was evident that SCG can contribute to the energy strategy through biofuels promotion.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Martinez-Saez, N., García, A.T., Pérez, I.D., Rebollo-Hernanz, M., Mesías, M., Morales, F.J., Martín-Cabrejas, M.A., del Castillo, M.D.: Use of spent coffee grounds as food ingredient in bakery products. Food Chem. 216, 114–122 (2017). https://doi.org/10.1016/j.foodchem.2016.07.173

    Article  Google Scholar 

  2. International Coffee Organisation: Coffee market report: July 2019. (2019)

  3. Peshev, D., Mitev, D., Peeva, L., Peev, G.: Valorization of spent coffee grounds—a new approach. Sep. Purif. Technol. 192, 271–277 (2018). https://doi.org/10.1016/j.seppur.2017.10.021

    Article  Google Scholar 

  4. Caetano, N.S., Silvaa, V.F.M., Mata, T.M.: Valorization of coffee grounds for biodiesel production. Chem. Eng. Trans. 26, 267–272 (2012). https://doi.org/10.3303/CET1226045

    Article  Google Scholar 

  5. Vardon, D.R., Moser, B.R., Zheng, W., Witkin, K., Evangelista, R.L., Strathmann, T.J., Rajagopalan, K., Sharma, B.K.: Complete utilization of spent coffee grounds to produce biodiesel, bio-oil, and biochar. ACS Sustain. Chem. Eng. 1, 1286–1294 (2013). https://doi.org/10.1021/sc400145w

    Article  Google Scholar 

  6. Tuntiwiwattanapun, N., Usapein, P., Tongcumpou, C.: The energy usage and environmental impact assessment of spent coffee grounds biodiesel production by an in-situ transesterification process. Energy Sustain. Dev. 40, 50–58 (2017)

    Article  Google Scholar 

  7. Blinova, L., Bartosova, A., Sirotiak, M.: Biodiesel production from spent coffee grounds. Res. Pap. Faculty Mater. Sci. Technol. Slovak Univ. Technol. 25, 113–121 (2017). https://doi.org/10.1515/rput-2017-0013

    Article  Google Scholar 

  8. Swanepoel, W., Karmee, S.K., Marx, S.: Biocatalytic production of biodiesel from spent coffee grounds. Environment 1, 2 (2016)

    Google Scholar 

  9. Aarthy, M., Saravanan, P., Gowthaman, M.K., Rose, C., Kamini, N.R.: Enzymatic transesterification for production of biodiesel using yeast lipases: an overview. Chem. Eng. Res. Des. 92, 1591–1601 (2014). https://doi.org/10.1016/j.cherd.2014.04.008

    Article  Google Scholar 

  10. Haile, M.: Integrated volarization of spent coffee grounds to biofuels. Biofuel Res. J. 1, 65–69 (2014). https://doi.org/10.18331/BRJ2015.1.2.6

    Article  Google Scholar 

  11. Kwon, E.E., Yi, H., Jeon, Y.J.: Sequential co-production of biodiesel and bioethanol with spent coffee grounds. Bioresour. Technol. 136, 475–480 (2013). https://doi.org/10.1016/j.biortech.2013.03.052

    Article  Google Scholar 

  12. Shi, A., Du, Z., Ma, X., Cheng, Y., Min, M., Deng, S., Chen, P., Li, D., Ruan, R.: Production and evaluation of biodiesel and bioethanol from high oil corn using three processing routes. Bioresour. Technol. 128, 100–106 (2013). https://doi.org/10.1016/j.biortech.2012.10.007

    Article  Google Scholar 

  13. Kovalcik, A., Obruca, S., Marova, I.: Valorization of spent coffee grounds: a review. Food Bioprod. Process. 110, 104–119 (2018). https://doi.org/10.1016/j.fbp.2018.05.002

    Article  Google Scholar 

  14. Allen, T.T.: Introduction to Engineering Statistics and Six Sigma. Springer, Colombus (2007)

    Google Scholar 

  15. Li, S.Z., Jain, A.: (eds.) Fisher criterion. In: Encyclopedia of Biometrics. pp. 549–549. Springer, Boston (2009)

  16. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of structural carbohydrates and lignin in biomass: Laboratory Analytical Procedure (LAP) (NREL/TP-510–42618). Natl. Renew. Energy Lab. 17 (2012)

  17. McNutt, J., He, Q.: Spent coffee grounds: a review on current utilization. J. Ind. Eng. Chem. 71, 78–88 (2019). https://doi.org/10.1016/j.jiec.2018.11.054

    Article  Google Scholar 

  18. Ballesteros, L.F., Teixeira, J.A., Mussatto, S.I.: Chemical, functional, and structural properties of spent coffee grounds and coffee silverskin. Food Bioprocess Technol. 7, 3493–3503 (2014). https://doi.org/10.1007/s11947-014-1349-z

    Article  Google Scholar 

  19. Atabani, A.E., Al-Muhtaseb, A.H., Kumar, G., Saratale, G.D., Aslam, M., Khan, H.A., Said, Z., Mahmoud, E.: Valorization of spent coffee grounds into biofuels and value-added products: pathway towards integrated bio-refinery. Fuel 254, 115640 (2019). https://doi.org/10.1016/j.fuel.2019.115640

    Article  Google Scholar 

  20. Al-Hamamre, Z., Foerster, S., Hartmann, F., Kröger, M., Kaltschmitt, M.: Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing. Fuel 96, 70–76 (2012). https://doi.org/10.1016/j.fuel.2012.01.023

    Article  Google Scholar 

  21. De Melo, M.M.R., Barbosa, H.M.A., Passos, C.P., Silva, C.M.: Supercritical fluid extraction of spent coffee grounds: measurement of extraction curves, oil characterization and economic analysis. J. Supercrit. Fluids. 86, 150–159 (2014). https://doi.org/10.1016/j.supflu.2013.12.016

    Article  Google Scholar 

  22. Yordanov, D., Mustafa, Z., Milina, R., Tsonev, Z.: Multi-criteria optimisation process of the oil extraction from spent coffee ground by various solvents. Oxid. Commun. 39, 1478–1487 (2016)

    Google Scholar 

  23. Low, J.H., Rahman, W.A.W.A., Jamaluddin, J.: The influence of extraction parameters on spent coffee grounds as a renewable tannin resource. J. Clean. Prod. 101, 222–228 (2015). https://doi.org/10.1016/j.jclepro.2015.03.094

    Article  Google Scholar 

  24. Mussatto, S.I., Dragone, G., Guimarães, P.M.R., Silva, J.P.A., Carneiro, L.M., Roberto, I.C., Vicente, A., Domingues, L., Teixeira, J.A.: Technological trends, global market, and challenges of bio-ethanol production. Biotechnol. Adv. 28, 817–830 (2010). https://doi.org/10.1016/j.biotechadv.2010.07.001

    Article  Google Scholar 

  25. Mussatto, S.I., Machado, E.M.S., Martins, S., Teixeira, J.A.: Production, composition, and application of coffee and its industrial residues. Food Bioprocess Technol. 4, 661–672 (2011). https://doi.org/10.1007/s11947-011-0565-z

    Article  Google Scholar 

  26. Efthymiopoulos, I., Hellier, P., Ladommatos, N., Russo-Profili, A., Eveleigh, A., Aliev, A., Kay, A., Mills-Lamptey, B.: Influence of solvent selection and extraction temperature on yield and composition of lipids extracted from spent coffee grounds. Ind. Crops Prod. 119, 49–56 (2018). https://doi.org/10.1016/j.indcrop.2018.04.008

    Article  Google Scholar 

  27. Crisafulli, P., Navarini, L., Silizio, F., Pallavicini, A., Illy, A.: Ultrastructural characterization of oil bodies in different coffea species. Trop. Plant Biol. 7, 1–12 (2014). https://doi.org/10.1007/s12042-013-9132-2

    Article  Google Scholar 

  28. Pichai, E., Krit, S.: Optimization of solid-to-solvent ratio and time for oil extraction process from spent coffee grounds using response surface methodology. ARPN J. Eng. Appl. Sci. 10, 7049–7052 (2015)

    Google Scholar 

  29. Kondamudi, N., Mohapatra, S.K., Misra, M.: Spent coffee grounds as a versatile source of green energy. J. Agric. Food Chem. 56, 11757–11760 (2008). https://doi.org/10.1021/jf802487s

    Article  Google Scholar 

  30. Jenkins, R.W., Stageman, N.E., Fortune, C.M., Chuck, C.J.: Effect of the type of bean, processing, and geographical location on the biodiesel produced from waste coffee grounds. Energy Fuels 28, 1166–1174 (2014). https://doi.org/10.1021/ef4022976

    Article  Google Scholar 

  31. Oliveira, L.S., Franca, A.S., Camargos, R.R.S., Ferraz, V.P.: Coffee oil as a potential feedstock for biodiesel production. Bioresour. Technol. 99, 3244–3250 (2008). https://doi.org/10.1016/j.biortech.2007.05.074

    Article  Google Scholar 

  32. Andrade, K.S., Gonalvez, R.T., Maraschin, M., Ribeiro-Do-Valle, R.M., Martínez, J., Ferreira, S.R.S.: Supercritical fluid extraction from spent coffee grounds and coffee husks: antioxidant activity and effect of operational variables on extract composition. Talanta 88, 544–552 (2012). https://doi.org/10.1016/j.talanta.2011.11.031

    Article  Google Scholar 

  33. Cholakov, G., Toteva, V., Nikolov, R., Uzunova, S., Yanev, S.: Extracts from coffee by-products as potential raw materials for fuel additives and carbon adsorbents. J. Chem. Technol. Metall. 48, 497–504 (2013)

    Google Scholar 

  34. Alder, P., Markova, E.V., Granovsky, V.: The Design of Experiments to Find Optimal Conditions a Programmed Introduction to the Design of Experiments. Mir Publishers, Moscow (1975)

    Google Scholar 

  35. Cochran, W.G., Cox, G.M.: Experimental Designs. WIley, New York (1957)

    MATH  Google Scholar 

  36. Seidenfeld, T.: R. A. Fisher on the design of experiments and statistical estimation. 23–36 (1992). https://doi.org/10.1007/978-94-011-2856-8_2

  37. Pacheco-Torgal, F., Diamanti, M.V., Nazari, A., Granqvist, C.-G.: Nanotechnology in Eco-efficient Construction. Woodhead Publishing Limited, Swaston (2013)

    Book  Google Scholar 

  38. Selvamuthu, D., Das, D.: Introduction to Statistical Methods, Design of Experiments and Statistical Quality Control. Springer, Singapore (2018)

    Book  Google Scholar 

  39. Cox, D.R., Reid, N.: The Theory of the Design of Experiments. Chapman & Hall CRC, New York (2000)

    Book  Google Scholar 

  40. Deligiannis, A., Papazafeiropoulou, A., Anastopoulos, G., Zannikos, F.: Waste coffee grounds as an energy feedstock. In: Proceeding 3rd Int. CEMEPE SECOTOX Conf., pp. 617–622 (2011)

  41. Kobelnilk, M., Fontanari, G.G., Cassimiro, D.L., Ribeiro, C.A., Crespi, M.S.: Thermal behavior of coffee oil (Robusta and Arabica species) (2014)

  42. Hurtado-Benavides, A., Dorado, D.A., Sánchez-Camargo, A.D.P.: Study of the fatty acid profile and the aroma composition of oil obtained from roasted Colombian coffee beans by supercritical fluid extraction. J. Supercrit. Fluids. 113, 44–52 (2016). https://doi.org/10.1016/j.supflu.2016.03.008

    Article  Google Scholar 

  43. Figueiredo, L.P., Borém, F.M., Ribeiro, F.C., Giomo, G.S., Taveira, J.D., Malta, M.R.: Fatty acid profiles and parameters of quality of specialty coffees produced in different Brazilian regions. African J. Agric. Res. 10, 3484–3493 (2015). https://doi.org/10.5897/ajar2015.9697

    Article  Google Scholar 

  44. Romano, R., Santini, A., Le Grottaglie, L., Manzo, N., Visconti, A., Ritieni, A.: Identification markers based on fatty acid composition to differentiate between roasted Arabica and Canephora (Robusta) coffee varieties in mixtures. J. Food Compos. Anal. 35, 1–9 (2014). https://doi.org/10.1016/j.jfca.2014.04.001

    Article  Google Scholar 

  45. Budryn, G., Nebesny, E., Zyzelewicz, D., Oracz, J., Miśkiewicz, K., Rosicka-Kaczmarek, J.: Influence of roasting conditions on fatty acids and oxidative changes of Robusta coffee oil. Eur. J. Lipid Sci. Technol. 114, 1052–1061 (2012). https://doi.org/10.1002/ejlt.201100324

    Article  Google Scholar 

  46. Wongsiridetchai, C., Chiangkham, W., Khlaihiran, N., Sawangwan, T., Wongwathanarat, P., Charoenrat, T., Chantorn, S.: Alkaline pretreatment of spent coffee grounds for oligosaccharides production by mannanase from Bacillus sp. GA2(1). Agric. Nat. Resour. 52, 222–227 (2018). https://doi.org/10.1016/j.anres.2018.09.012

    Article  Google Scholar 

  47. Iroba, K.L., Tabil, L.G., Dumonceaux, T., Baik, O.D.: Effect of alkaline pretreatment on chemical composition of lignocellulosic biomass using radio frequency heating. Biosyst. Eng. 116, 385–398 (2013). https://doi.org/10.1016/j.biosystemseng.2013.09.004

    Article  Google Scholar 

  48. Kim, J.S., Lee, Y.Y., Kim, T.H.: A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresour. Technol. 199, 42–48 (2016). https://doi.org/10.1016/j.biortech.2015.08.085

    Article  Google Scholar 

  49. Procentese, A., Raganati, F., Navarini, L., Olivieri, G., Russo, M.E., Marzoccchella, A.: Coffee silverskin as a renewable resource to produce butanol and isopropanol. Chem. Eng. Trans. 64, 139–144 (2018). https://doi.org/10.3303/CET1864024

    Article  Google Scholar 

  50. Girotto, F., Lavagnolo, M.C., Pivato, A.: Spent coffee grounds alkaline pre-treatment as biorefinery option to enhance their anaerobic digestion yield. Waste Biomass Valoriz. 9(12), 2565–3257 (2018)

    Article  Google Scholar 

  51. De Laclos, H.F., Thiebaut, E., Saint-Joly, C.: Anaerobic digestion of residual municipal solid waste using biological-mechanical pre-treatment: the plant of Varennes Jarcy. Water Sci. Technol. 58, 1447–1452 (2008). https://doi.org/10.2166/wst.2008.519

    Article  Google Scholar 

  52. Giwa, A., Adeyemi, I., Dindi, A., Lopez, C.G.B., Lopresto, C.G., Curcio, S., Chakraborty, S.: Techno-economic assessment of the sustainability of an integrated biorefinery from microalgae and Jatropha: a review and case study. Renew. Sustain. Energy Rev. 88, 239–257 (2018). https://doi.org/10.1016/j.rser.2018.02.032

    Article  Google Scholar 

  53. Sarkar, N., Ghosh, S.K., Bannerjee, S., Aikat, K.: Bioethanol production from agricultural wastes: an overview. Renew. Energy. 37, 19–27 (2012). https://doi.org/10.1016/j.renene.2011.06.045

    Article  Google Scholar 

  54. Paritosh, K., Yadav, M., Mathur, S., Balan, V., Liao, W., Pareek, N., Vivekanand, V.: Organic fraction of municipal solid waste: overview of treatment methodologies to enhance anaerobic biodegradability. Front. Energy Res. 6, 1–17 (2018). https://doi.org/10.3389/fenrg.2018.00075

    Article  Google Scholar 

  55. Yang, F., Hanna, M.A., Sun, R.: Yang et al. 2012 Value added use crude glycerol. Biotechnol. Biofuels. 5, 1–10 (2012). https://doi.org/10.1177/0095244312462163

    Article  Google Scholar 

  56. Massaya, J., Prates Pereira, A., Mills-Lamptey, B., Benjamin, J., Chuck, C.J.: Conceptualization of a spent coffee grounds biorefinery: a review of existing valorisation approaches. Food Bioprod. Process. 118, 149–166 (2019). https://doi.org/10.1016/j.fbp.2019.08.010

    Article  Google Scholar 

  57. Moser, B.R.: Biodiesel production, properties, and feedstocks. Vitr. Cell. Dev. Biol.-Plant. 45, 229–266 (2009). https://doi.org/10.1007/s11627-009-9204-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Loizidou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passadis, K., Fragoulis, V., Stoumpou, V. et al. Study of Valorisation Routes of Spent Coffee Grounds. Waste Biomass Valor 11, 5295–5306 (2020). https://doi.org/10.1007/s12649-020-01096-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-020-01096-0

Keywords

Navigation