Skip to main content
Log in

Production, Composition, and Application of Coffee and Its Industrial Residues

  • Review Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Coffee is one of the most consumed beverages in the world and is the second largest traded commodity after petroleum. Due to the great demand of this product, large amounts of residues are generated in the coffee industry, which are toxic and represent serious environmental problems. Coffee silverskin and spent coffee grounds are the main coffee industry residues, obtained during the beans roasting, and the process to prepare “instant coffee”, respectively. Recently, some attempts have been made to use these residues for energy or value-added compounds production, as strategies to reduce their toxicity levels, while adding value to them. The present article provides an overview regarding coffee and its main industrial residues. In a first part, the composition of beans and their processing, as well as data about the coffee world production and exportation, are presented. In the sequence, the characteristics, chemical composition, and application of the main coffee industry residues are reviewed. Based on these data, it was concluded that coffee may be considered as one of the most valuable primary products in world trade, crucial to the economies and politics of many developing countries since its cultivation, processing, trading, transportation, and marketing provide employment for millions of people. As a consequence of this big market, the reuse of the main coffee industry residues is of large importance from environmental and economical viewpoints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • ABIC (2009). World exportation of coffee. Available at: http://www.abic.com.br/estat_exporta_ppaises.html. Accessed 05 March 2010.

  • ABNT—Associação Brasileira de Normas Técnicas (1987), Resíduos Sólidos—Classificação—NBR 10.004. ABNT, Rio de Janeiro, Brazil.

  • Andueza, S., Maeztu, L., Dean, B., de Peña, M. P., Bello, J., & Cid, C. (2002). Influence of water pressure on the final quality of arabica espresso coffee. Application of multivariate analysis. Journal of Agricultural and Food Chemistry, 50, 7426–7431.

    Article  CAS  Google Scholar 

  • Andueza, S., Maeztu, L., Pascual, L., Ibanez, C., de Peña, M. P., & Cid, C. (2003). Influence of extraction temperature on the final quality of espresso coffee. Journal of the Science of Food and Agriculture, 83, 240–248.

    Article  CAS  Google Scholar 

  • Andueza, S., Vila, M. A., Peña, M. P., & Cid, C. (2007). Influence of coffee/water ratio on the final quality of espresso coffee. Journal of the Science of Food and Agriculture, 87, 586–592.

    Article  CAS  Google Scholar 

  • Arya, M., & Rao, J. M. (2007). An impression of coffee carbohydrates. Critical Reviews in Food Science and Nutrition, 47, 51–67.

    Article  CAS  Google Scholar 

  • Baggenstoss, J., Poisson, L., Luethi, R., Perren, R., & Escher, F. (2007). Influence of water quench cooling on degassing and aroma stability of roasted coffee. Journal of Agriculture and Food Chemistry, 55, 6685–6691.

    Article  CAS  Google Scholar 

  • Belitz, H.-D., Grosch, W., & Schieberle, P. (2009). Coffee, tea, cocoa. In H.-D. Belitz, W. Grosch, & P. Schieberle (Eds.), Food Chemistry (4th ed., pp. 938–951). Leipzig: Springer.

    Google Scholar 

  • Bell, L. N., Wetzel, C. R., & Grand, A. N. (1996). Caffeine content in coffee as influenced by grinding and brewing techniques. Food Research International, 29, 185–189.

    Article  Google Scholar 

  • Borrelli, R. C., Esposito, F., Napolitano, A., Ritieni, A., & Fogliano, V. (2004). Characterization of a new potential functional ingredient: coffee silverskin. Journal of Agricultural and Food Chemistry, 52, 1338–1343.

    Article  CAS  Google Scholar 

  • Carneiro, L.M., Silva, J.P.A., Mussatto, S.I., Roberto, I.C., & Teixeira, J.A. (2009). Determination of total carbohydrates content in coffee industry residues. In: 8th International Meeting of the Portuguese Carbohydrate Group, GLUPOR, pp 94, 6–10 September 2009, Braga, Portugal (Book of abstracts).

  • Claude, B. (1979). Étude bibliographique: utilisation dês sous-produits du café. Café Cacao Thé, 23, 146–152.

    Google Scholar 

  • Comité Français du Café. (1997). Café—a la découverte du café. Paris: Adexquation Publicite.

    Google Scholar 

  • Couto, R. M., Fernandes, J., Gomes da Silva, M. D. R., & Simões, P. C. (2009). Supercritical fluid extraction of lipids from spent coffee grounds. Journal of Supercritical Fluids, 51, 159–166.

    Article  CAS  Google Scholar 

  • Cruz, G. M. (1983). Resíduos de cultura e indústria. Informe Agropecuário, 9, 32–37.

    Google Scholar 

  • Cunha, M. R. (1992). Apêndice estatístico. In E. L. Bacha & R. Greenhill (Eds.), 150 anos de café (pp. 286–388). Rio de Janeiro: Marcellino Martins & E. Johnston.

    Google Scholar 

  • Czerny, M., & Grosch, W. (2000). Potent odorants of raw Arabica coffee. Their changes during roasting. Journal of Agricultural and Food Chemistry, 48, 868–872.

    Article  CAS  Google Scholar 

  • Czerny, M., Mayer, F., & Grosch, W. (1999). Sensory study on the character impact odorants of roasted arabica coffee. Journal of Agricultural and Food Chemistry, 47, 695–699.

    Article  CAS  Google Scholar 

  • Daglia, M., Papetti, A., Gregotti, C., Berté, F., & Gazzani, G. (2000). In vitro antioxidant and ex vivo protective activities of green and roasted coffee. Journal of Agriculture and Food Chemistry, 48, 1449–1454.

    Article  CAS  Google Scholar 

  • Dutra, E. R., Oliveira, L. S., Franca, A. S., Ferraz, V. P., & Afonso, R. J. C. (2001). A preliminary study on the feasibility of using the composition of coffee roasting exhaust gas for the determination of the degree of roast. Journal of Food Engineering, 47, 241–246.

    Article  Google Scholar 

  • EPA, United States Environmental Protection Agency (2010). Available at: http://www.epa.gov/chief/ap42/ch09/final/c9s13-2.pdf. Accessed 13 May 2010.

  • Etienne, H. (2005). Somatic embryogenesis protocol: coffee (Coffea arabica L. and C. canephora P.). In S. M. Jain & P. K. Gupta (Eds.), Protocol for somatic embryogenesis in woody plant (pp. 167–168). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Feria-Morales, A. M. (2002). Examining the case of green coffee to illustrate the limitations of grading systems/expert tasters in sensory evaluation for quality control. Food Quality and Preference, 13, 355–367.

    Article  Google Scholar 

  • Franca, A. S., Mendonça, J. C. F., & Oliveira, S. D. (2005). Composition of green and roasted coffees of different cup qualities. LWT—Food Science and Technology, 38, 709–715.

    CAS  Google Scholar 

  • Franca, A. S., Oliveira, L. S., Oliveira, R. C. S., Agresti, P. C. M., & Augusti, R. (2009a). A preliminary evaluation of the effect of processing temperature on coffee roasting degree assessment. Journal of Food Engineering, 92, 345–352.

    Article  CAS  Google Scholar 

  • Franca, A. S., Oliveira, L. S., & Ferreira, M. E. (2009b). Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds. Desalination, 249, 267–272.

    Article  CAS  Google Scholar 

  • Franková, A., Drábek, O., Havlík, J., Száková, J., & Vanek, A. (2009). The effect of beverage preparation method on aluminium content in coffee infusions. Journal of Inorganic Biochemistry, 103, 1480–1485.

    Article  Google Scholar 

  • Freitas, S.P., Monteiro, P.L. & Lago, R.C.A. (2000). Extração do óleo da borra de café solúvel com etanol comercial. In: I Simpósio de Pesquisa dos Cafés do Brasil, pp 740–743, 26–29 September 2000, Poços de Caldas/MG, Brazil (Book of expanded abstracts).

  • Fujioka, K., & Shibamoto, T. (2008). Chlorogenic acid and caffeine contents in various commercial brewed coffees. Food Chemistry, 106, 217–221.

    Article  CAS  Google Scholar 

  • Ghoreishi, S. M., & Shahrestani, R. G. (2009). Innovative strategies for engineering mannitol production. Trends in Food Science and Technology, 20, 263–270.

    Article  CAS  Google Scholar 

  • Ginz, M., Balzer, H. H., Bradbury, A. G. W., & Maier, H. (2000). Formation of aliphatic acids by carbohydrate degradation during roasting of coffee. European Food Research and Technology, 211, 404–410.

    Article  CAS  Google Scholar 

  • Givens, D. I., & Barber, W. P. (1986). In vivo evaluation of spent coffee grounds as a ruminant feed. Agricultural Wastes, 18, 69–72.

    Article  Google Scholar 

  • Gonzalez-Rios, O., Suarez-Quiroza, M. L., Boulanger, R., Barel, M., Guyot, B., Guiraud, J.-P., et al. (2007a). Impact of “ecological” post-harvest processing on coffee aroma: I. Green coffee. Journal of Food Composition and Analysis, 20, 289–296.

    Article  CAS  Google Scholar 

  • Gonzalez-Rios, O., Suarez-Quiroza, M. L., Boulanger, R., Barel, M., Guyot, B., Guiraud, J.-P., et al. (2007b). Impact of “ecological” post-harvest processing on coffee aroma: II. Roasted coffee. Journal of Food Composition and Analysis, 20, 297–307.

    Article  CAS  Google Scholar 

  • Grembecka, M., Malinowska, E., & Szefer, P. (2007). Differentiation of market coffee and its infusions in view of their mineral composition. Science of the Total Environment, 383, 59–69.

    Article  CAS  Google Scholar 

  • Hernández, J. A., Heyd, B., & Trystram, G. (2008). On-line assessment of brightness and surface kinetics during coffee roasting. Journal of Food Engineering, 87, 314–322.

    Article  Google Scholar 

  • Huang, R., Qi, W., Su, R., & He, Z. (2010). Integrating enzymatic and acid catalysis to convert glucose into 5-hydroxymethylfurfural. Chemical Communications, 46, 1115–1117.

    Article  CAS  Google Scholar 

  • ICO, International Coffee Organization (2010). Available at: http://www.ico.org/. Accessed 05 March 2010.

  • Jorgensen, H., Sanadi, A. R., Felby, C., Lange, N. E. K., Fischer, M., & Ernst, S. (2010). Production of ethanol and feed by high dry matter hydrolysis and fermentation of palm kernel press cake. Applied Biochemistry and Biotechnology, 161, 318–332.

    Article  CAS  Google Scholar 

  • Kondamudi, N., Mohapatra, S. K., & Misra, M. (2008). Spent coffee grounds as a versatile source of green energy. Journal of Agricultural and Food Chemistry, 56, 11757–11760.

    Article  CAS  Google Scholar 

  • Kumazawa, K., & Masuda, H. (2003). Investigation of the change in the flavor of a coffee drink during heat processing. Journal of Agricultural and Food Chemistry, 51, 2674–2678.

    Article  CAS  Google Scholar 

  • Lago, R.C.A. & Antoniassi, R. (2001). Composição centesimal e de aminoácidos em cafés. In: II Simpósio de Pesquisa dos Cafés do Brasil. Available at: http://www.coffeebreak.com.br/ocafezal.asp?SE=8&ID=373. Accessed 02 December 2008.

  • Leifa, F., Pandey, A., & Soccol, C. R. (2001). Production of Flammulina velutipes on coffee husk and coffee spent-ground. Brazilian Archives of Biology and Technology, 44, 205–212.

    Article  CAS  Google Scholar 

  • Lima, D. R. (2003). Café e Saúde: Manual de Farmacologia Clínica, Terapeutica e Toxicologia. Rio de Janeiro: Medsi Editora.

    Google Scholar 

  • Machado, E.S.M. (2009). Reaproveitamento de resíduos da indústria do café como matéria-prima para a produção de etanol. MSc thesis, Department of Biological Engineering, University of Minho, Braga, Portugal.

  • Mesa, L., González, E., Cara, C., Ruiz, E., Castro, E., & Mussatto, S. I. (2010). An approach to optimization of enzymatic hydrolysis from sugarcane bagasse based on organosolv pretreatment. Journal of Chemical Technology and Biotechnology, 85, 1092–1098.

    Article  CAS  Google Scholar 

  • Miranda, M. Z., Grossmann, M. V. E., & Nabeshima, E. H. (1994). Utilization of brewers’ spent grain for the production of snacks with fiber. 1. Physicochemical characteristics. Brazilian Archives of Biology and Technology, 37, 483–493.

    Google Scholar 

  • Murthy, P.S. & Naidu, M.M. (2010a). Production and application of xylanase from Penicillium sp. Utilizing coffee by-products. Food Bioprocess Technology, doi:10.1007/s11947-010-0331-7.

  • Murthy, P.S. & Naidu, M.M. (2010b). Recovery of phenolic antioxidants and functional compounds from coffee industry by-products. Food and Bioprocess Technology, doi:10.1007/s11947-010-0363-z.

  • Murthy, P. S., Naidu, M. M., & Srinivas, P. (2009). Production of α-amylase under solid-state fermentation utilizing coffee waste. Journal of Chemical Technology and Biotechnology, 84, 1246–1249.

    Article  CAS  Google Scholar 

  • Mussatto, S. I., & Roberto, I. C. (2004). Alternatives for detoxification of diluted acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Bioresource Technology, 93, 1–10.

    Article  CAS  Google Scholar 

  • Mussatto, S. I., & Roberto, I. C. (2005). Acid hydrolysis and fermentation of brewer’s spent grain to produce xylitol. Journal of the Science of Food and Agriculture, 85, 2453–2460.

    Article  CAS  Google Scholar 

  • Mussatto, S. I., & Teixeira, J. A. (2010). Increase in the fructooligosaccharides yield and productivity by solid-state fermentation with Aspergillus japonicus using agro-industrial residues as support and nutrient source. Biochemical Engineering Journal, 53, 154–157.

    Article  CAS  Google Scholar 

  • Mussatto, S. I., Dragone, G., & Roberto, I. C. (2006). Brewer’s spent grain: generation, characteristics and potential applications. Journal of Cereal Science, 43, 1–14.

    Article  CAS  Google Scholar 

  • Mussatto, S. I., Dragone, G., Fernandes, M., Milagres, A. M. F., & Roberto, I. C. (2008a). The effect of agitation speed, enzyme loading and substrate concentration on enzymatic hydrolysis of cellulose from brewer’s spent grain. Cellulose, 15, 711–721.

    Article  CAS  Google Scholar 

  • Mussatto, S. I., Fernandes, M., Mancilha, I. M., & Roberto, I. C. (2008b). Effects of medium supplementation and pH control on lactic acid production from brewer’s spent grain. Biochemical Engineering Journal, 40, 437–444.

    Article  CAS  Google Scholar 

  • Mussatto, S. I., Carneiro, L. M., Silva, J. P. A., Roberto, I. C., & Teixeira, J. A. (2011). A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydrate Polymers, 83, 368–374.

    Article  CAS  Google Scholar 

  • Nabais, J. M. V., Nunes, P., Carrott, P. J. M., Carrott, M. R., García, A. M., & Díez, M. A. D. (2008). Production of activated carbons from coffee endocarp by CO2 and steam activation. Fuel Processing Technology, 89, 262–268.

    Article  CAS  Google Scholar 

  • Navarini, L., & Rivetti, D. (2010). Water quality for Espresso coffee. Food Chemistry, 122, 424–428.

    Article  CAS  Google Scholar 

  • Navarini, L., Nobile, E., Pinto, F., Scheri, A., & Suggi-Liverani, F. (2009). Experimental investigation of steam pressure coffee extraction in a stove-top coffee maker. Applied Thermal Engineering, 29, 998–1004.

    Article  CAS  Google Scholar 

  • Neves, C. (1974). A estória do café (p. 52). Rio de Janeiro: Instituto Brasileiro do Café.

    Google Scholar 

  • Oliveira, A. L., Cabral, F. A., Eberlin, M. N., & Cordello, H. M. A. B. (2009). Sensory evaluation of black instant coffee beverage with some volatile compounds present in aromatic oil from roasted coffee. Ciência e Tecnologia de Alimentos, 29, 76–80.

    Article  Google Scholar 

  • Pan, C., Zhang, S., Fan, Y., & Hou, H. (2010). Bioconversion of corncob to hydrogen using anaerobic mixed microflora. International Journal of Hydrogen Energy, 35, 2663–2669.

    Article  CAS  Google Scholar 

  • Pandey, A., Soccol, C. R., Nigam, P., Brand, D., Mohan, R., & Roussos, S. (2000). Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochemical Engineering Journal, 6, 153–162.

    Article  CAS  Google Scholar 

  • Parras, P., Martínez-Tomé, M., Jiménez, A. M., & Murcia, M. A. (2007). Antioxidant capacity of coffees of several origins brewed following three different procedures. Food Chemistry, 102, 582–592.

    Article  CAS  Google Scholar 

  • Pérez-Martínez, M., Caemmerer, B., de Peña, M. P., Cid, C., & Kroh, L. W. (2010). Influence of brewing method and acidity regulators on the antioxidant capacity of coffee brews. Journal of Agricultural and Food Chemistry, 58, 2958–2965.

    Article  Google Scholar 

  • Petracco, M. (2001). Beverage preparation: brewing trends for the new millennium. In R. Clarke & O. Vitzthum (Eds.), Coffee: Recent Developments. Oxford: Blackwell Science.

    Google Scholar 

  • Pfluger, R. A. (1975). Soluble coffee processing. In C. L. Mantell (Ed.), Solid wastes: origin, collection, processing, and disposal. New York: Wiley.

    Google Scholar 

  • Qureshi, N., & Ezeji, T. C. (2008). Butanol "a superior biofuel" production from agricultural residues (renewable biomass): recent progress in technology. Biofuel, Bioproducts and Biorefining, 2, 319–330.

    Article  CAS  Google Scholar 

  • Ramalakshmi, K., Rao, J. M., Takano-Ishikawa, Y., & Goto, M. (2009). Bioactivities of low-grade green coffee and spent coffee in different in vitro model systems. Food Chemistry, 115, 79–85.

    Article  CAS  Google Scholar 

  • Ratnayake, W. M. N., Hollywood, R., O’Grady, E., & Stavric, B. (1993). Lipid content and composition of coffee brews prepared by different methods. Food and Chemical Toxicology, 31, 263–269.

    Article  CAS  Google Scholar 

  • Rawel, H. M., & Kulling, S. E. (2007). Nutritional contribution of coffee, cacao and tea phenolics to human health. Journal of Consumer Protection and Food Safety, 2, 399–406.

    CAS  Google Scholar 

  • Ren, N., Wang, A., Cao, G., Xu, J., & Gao, L. (2009). Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnology Advances, 27, 1051–1060.

    Article  CAS  Google Scholar 

  • Rinaldi, R., & Schüth, F. (2009). Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem, 2, 1096–1107.

    Article  CAS  Google Scholar 

  • Sacchetti, G., Di Mattia, C., Pittia, P., & Mastrocola, D. (2009). Effect of roasting degree, equivalent thermal effect and coffee type on the radical scavenging activity of coffee brews and their phenolic fraction. Journal of Food Engineering, 90, 74–80.

    Article  Google Scholar 

  • Saenger, M., Hartge, E.-U., Werther, J., Ogada, T., & Siagi, Z. (2001). Combustion of coffee husks. Renewable Energy, 23, 103–121.

    Article  CAS  Google Scholar 

  • Saha, B. C., & Bothast, R. J. (1996). Production of L-arabitol from L-arabinose by Candida entomaea and Pichia guilliermondii. Applied Microbiology and Biotechnology, 45, 299–306.

    Article  CAS  Google Scholar 

  • Sampaio, A.R.M. (2010). Desenvolvimento de tecnologias para produção de etanol a partir do hidrolisado da borra de café. MSc thesis, Department of Biological Engineering, University of Minho, Braga, Portugal.

  • Santos, E. J., & Oliveira, E. (2001). Determination of mineral nutrients and toxic elements in Brazilian soluble coffee by ICP-AES. Journal of Food Composition and Analysis, 14, 523–531.

    Article  CAS  Google Scholar 

  • Sendzikiene, E., Makareviciene, V., Janulis, P., & Kitrys, S. (2004). Kinetics of free fatty acids esterification with methanol in the production of biodiesel fuel. European Journal of Lipid Science and Technology, 106, 831–836.

    Article  CAS  Google Scholar 

  • Shen, J., & Agblevor, F. A. (2010). Modeling semi-simultaneous saccharification and fermentation of ethanol production from cellulose. Biomass and Bioenergy, 34, 1098–1107.

    Article  CAS  Google Scholar 

  • Silva, M. A., Nebra, S. A., Machado Silva, M. J., & Sanchez, C. G. (1998). The use of biomass residues in the Brazilian soluble coffee industry. Biomass and Bioenergy, 14, 457–467.

    Article  CAS  Google Scholar 

  • Silva, J. P. A., Mussatto, S. I., & Roberto, I. C. (2010). The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate. Applied Biochemistry and Biotechnology, 162, 1306–1315.

    Article  CAS  Google Scholar 

  • Sobésa Café (2008). Available at: http://www.sobesa.com.br. Accessed 05 March 2010.

  • Taherzadeh, M. J., Adler, L., & Lidén, G. (2002). Strategies for enhancing fermentative production of glycerol—a review. Enzyme and Microbial Technology, 31, 53–66.

    Article  CAS  Google Scholar 

  • Taunay, A.E. (1939). História do café no Brasil. No Brasil Imperial 1822–1872, tomo I, v. 5. Departamento Nacional do Café, Rio de Janeiro, Brazil.

  • Tokimoto, T., Kawasaki, N., Nakamura, T., Akutagawa, J., & Tanada, S. (2005). Removal of lead ions in drinking water by coffee grounds as vegetable biomass. Journal of Colloid and Interface Science, 281, 56–61.

    Article  CAS  Google Scholar 

  • Townsley, P. M. (1979). Preparation of commercial products from brewer’s waste grain and trub. MBAA Technical Quarterly, 16, 130–134.

    CAS  Google Scholar 

  • Trugo, L. (2003). Coffee. In B. Caballero, L. Trugo, & P. Finglas (Eds.), Encyclopedia of Food Sciences and Nutrition (2nd ed.). London: Academic.

    Google Scholar 

  • Trugo, L. C., & Macrae, R. (1984). A study of the effect of roasting on the chlorogenic acid composition of coffee using HPLC. Food Chemistry, 15, 219–227.

    Article  CAS  Google Scholar 

  • Wang, S.-C., & Huffman, J. B. (1981). Botanochemicals: supplements to petrochemicals. Economic Botany, 35, 369–382.

    Article  CAS  Google Scholar 

  • Wang, D., Sakoda, A., & Suzuki, M. (2001). Biological efficiency and nutritional value of Pleurotus ostreatus cultivated on spent beer grain. Bioresource Technology, 78, 293–300.

    Article  CAS  Google Scholar 

  • Zhuang, X. L., Zhang, H. X., Yang, J. Z., & Qi, H. Y. (2001). Preparation of levoglucosan by pyrolysis of cellulose and its citric acid fermentation. Bioresource Technology, 79, 63–66.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solange I. Mussatto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mussatto, S.I., Machado, E.M.S., Martins, S. et al. Production, Composition, and Application of Coffee and Its Industrial Residues. Food Bioprocess Technol 4, 661–672 (2011). https://doi.org/10.1007/s11947-011-0565-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-011-0565-z

Keywords

Navigation