Skip to main content

Advertisement

Log in

Structural and Thermal Investigation of Three Agricultural Biomasses Following Mild-NaOH Pretreatment to Increase Anaerobic Biodegradability

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this work mild-alkaline semi-solid state pretreatments (NaOH: 2; 4; 6 %, at 25 °C, TS 10 %) were applied to Arundo donax, Sorghum bicolour L. and wheat straw (Triticum aestivum, L.) to test their efficiency on anaerobic biodegradability. The simple sugars (glucose, xylose, arabinose) from structural carbohydrate and the lignin content were analyzed in raw treated samples. Besides to this their structural variation were assessed by means of FT-IR and thermal analysis. The recovery of glucose (1–2 %), xylose (0.4–2.5 %), and arabinose (0.1–8.7 %) in the alkaline eluate showed the treatment produced moderate hydrolysis of the structural components. This was confirmed by the moderate variation of glucose, xylose, arabinose and lignin content determined in the solid residue. On the contrary the FT-IR analysis showed the solid fraction of samples had intense variations in the cellulose and hemicellulose structure (mainly saponification of ester bounds), also confirmed by thermal analysis. The maximum degradation rate (−dx/dtmax; s−1) of cellulose and hemicellulose increased in both Arundo and Sorghum, indicating a structural cleavage. Straw showed moderately increased resilience of hemicellulose by small temperature shifts. A general decrease of the apparent activation energy (E a ) was found in all samples as an indication of decreased structural order favourable to enzymatic hydrolysis and the additional anaerobic biodegradability, as proved by the anaerobic tests in which A. donax showed the highest increase of biodegradability at NaOH 6 % (+30 %) > wheat straw (+22 %) > Sorghum (11 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hermann, A.: Biogas production from maize: current state, challenges and prospects. 2. Agronomic and environmental aspects. Bionergy Res. 6, 372–387 (2013)

    Article  Google Scholar 

  2. Zhang, J., Zhang, X., Li, C., Zhang, W., Zhang, J., Zhang, J., Yuan, Q., Liu, G., Cheng, G.: A comparative study of enzymatic hydrolysis and thermal degradation of corn stover: understanding biomass pretreatment. RCS Adv. 5, 36999–37005 (2015)

    Google Scholar 

  3. Johnson, R.L., Liaw, S.S., Garcia-Perez, M., Ha, S., Lin, S.S.Y., McDonald, A.G., Chen, S.: Pyrolysis gas chromatography mass spectrometry studies to evaluate high-temperature aqueous pretreatment as a way to modify the composition of bio-oil form fast pyrolysis of wheat straw. Energy Fuels 23, 6242–6252 (2009)

    Article  Google Scholar 

  4. Barbanti, L., Di Girolamo, G., Grigatti, M., Bertin, L., Ciavatta, C.: Anaerobic digestion of annual and multi-annual biomass crops. Ind. Crops Prod. 56, 137–144 (2014)

    Article  Google Scholar 

  5. Angelini, L.G., Ceccarini, L., O Di Nasso, N.N., Bonari, E.: Comparison of Arundo donax L. and Miscanthus x giganteus in a long-term field experiment in Central Italy: analysis of productive characteristics and energy balance. Biomass Bionergy 33, 635–643 (2009)

    Article  Google Scholar 

  6. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal L, 140:16–62. eur-lex.europa.eu

  7. Bauer, A., Leonhartsberger, P.B., Amon, B., Friedl, T.A.: Analysis of methane yields from energy crops and agricultural by-products and estimation of energy potential from sustainable crop rotation systems in EU-27. Clean Technol. Environ. 12, 153–161 (2010)

    Article  Google Scholar 

  8. Sambusiti, C., Ficara, E., Malpei, F., Steyer, J.P., Carrère, H.: Influence of alkaline pre-treatments conditions on structural features and methane production from ensiled sorghum forage. Chem. Eng. J. 211–212, 488–492 (2012)

    Article  Google Scholar 

  9. Rani, R.U., Kumar, S.A., Kalliappan, S., Yeom, I.T., Banu, J.R.: Low temperature thermo-chemical pretreatment of dairy waste activated sludge for anaerobic digestion process. Bioresour. Technol. 103, 415–424 (2012)

    Article  Google Scholar 

  10. Rani, R.U., Kalliappan, S., Kumar, S.A., Banu, J.R.: Combined treatment of alkaline and disperser for improving solubilization and anaerobic biodegradability of dairy waste activated sludge. Bioresour. Technol. 126, 107–116 (2012)

    Article  Google Scholar 

  11. He, Y., Pang, Y., Liu, Y., Li, X., Wang, K.: physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production. Energy Fuels 22, 2775–2781 (2008)

    Article  Google Scholar 

  12. Raposo, F., de la Rubia, M.A., Borja, R., Alaiz, M.: Assessment of a modified and optimized method for determining chemical oxygen demand of solid substrates and solutions with high suspended solids content. Talanta 76, 448–453 (2008)

    Article  Google Scholar 

  13. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J, Templeton, D.: Determination of structural carbohydrates and lignin in biomass. Technical Report, 2011; National Renewable Energy Laboratory (NREL). www.nrel.gov

  14. Munir, S., Daood, S.S., Nimmo, W., Cunliffe, A.M., Gibbs, B.M.: Thermal analysis and devolatilization kinetics of cotton stalks, sugar cane bagasse and shea meal under nitrogen and air atmospheres. Bioresour. Technol. 100, 1413–1418 (2009)

    Article  Google Scholar 

  15. Parthasarathy, P., Narayanan, S.: Determination of kinetic parameters of biomass samples using thermogravimetric analysis. Environ. Prog. 33, 256–266 (2014)

    Article  Google Scholar 

  16. Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J.L., Guwy, A.J., Kalyuzhnyi, P., Jenicek, J.B., Van Lier, J.B.: Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci. Technol. 59, 927–934 (2009)

    Article  Google Scholar 

  17. Lou, H.X., Yuan, J.W., Hwa, J.T.: A hybrid anaerobic solid-liquid bioreactor for food waste digestion. Biotechnol. Lett. 24, 757–761 (2002)

    Article  Google Scholar 

  18. Maréchal, Y., Chanzy, H.: The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J. Mol. Struct. 523, 183–196 (2002)

    Article  Google Scholar 

  19. Fengel, D., Ludwig, M.: Möglichkeiten und Grenzen der FTIR-Spektroskopie bei der Charakterisierung von Cellulose. Teil 1. Vergleich von verschiedenen Cellulosefasern und Bakterien-Cellulose. Das Papier 45, 45–51 (1991)

    Google Scholar 

  20. Sene, C.F.B., McCann, M.C., Wilson, R.H., Grinter, R.: Fourier transform raman and fourier transform infrared spectroscopy. Plant Physiol. 106, 1623–1631 (1994)

    Google Scholar 

  21. Kačuraková, M., Capek, P., Sasinková, V., Wellner, N., Ebringerova, A.: FT-IR study of plant cell wall model compounds: pectic polysaccarides and hemicellulose. Carbohydr. Polym. 43, 195–203 (2000)

    Article  Google Scholar 

  22. Sun, R.C., Sun, X.F., Ma, X.H.: Effect of ultrasound on the structural and physiochemical properties of organosolv soluble hemicellulose from wheat straw. Ultrason. Sonochem. 9, 95–101 (2002)

    Article  Google Scholar 

  23. Kačuráková, M., Ebringerová, A., Hirsch, J., Hromádková, Z.: Infrared study of arabinoxylans. J. Sci. Food Agric. 66, 423–427 (1994)

    Article  Google Scholar 

  24. Jeguirim, M., Dorge, S., Trouvé, G.: Thermogravimetric analysis and emission characteristics of two energy crops in air atmosphere: Arundo donax and Miscanthus giganteus. Bioresour. Technol. 101, 788–793 (2010)

    Article  Google Scholar 

  25. Sambusiti, C., Monlau, F., Ficara, E., Carrère, H., Malpei, F.: A comparison of different pre-treatements to increase methane production from two agricultural substrates. Appl. Energy 104, 62–70 (2013)

    Article  Google Scholar 

  26. Ververis, C., Georghiou, K., Christodoulakis, N., Santas, P., Santas, R.: Fibre dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Ind. Crops Prod. 19, 245–254 (2004)

    Article  Google Scholar 

  27. Sun, S.L., Sun, S.N., Wen, J.L., Zhang, X.M., Peng, F., Sun, R.C.: Assessment of integrated process based on hydrothermally and alkaline treatments for enzymatic saccharification of sweet sorghum stems. Bioresour. Technol. 175, 473–479 (2015)

    Article  Google Scholar 

  28. Nigam, J.M.: Ethanol production from wheat straw hemicellulose hydrolisate by Pichia stipis. J. Biotechnol. 87, 17–27 (2001)

    Article  Google Scholar 

  29. Teghammar, A., Karimi, K., Harovát, I.S., Taherzadeh, M.J.: Enhanched biogas production from rice straw, triticale straw and softwood spruce by NMMO pretreatment. Biomass and Bioenergy 36, 116–120 (2012)

    Article  Google Scholar 

  30. Hu, F., Ragauskas, A.: Pretreatment and lignocellulosic chemistry. Bionergy Res. 5, 1043–1066 (2012)

    Article  Google Scholar 

  31. Sun, Y., Cheng, J.: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1–11 (2002)

    Article  Google Scholar 

  32. Izydorczyk, M.S., Biliaderis, C.G.: Cereal arabinoxylanes: advanced structure and physicochemical properties. Carbohydr. Polym. 28, 33–48 (1995)

  33. Sun, S.N., Cao, X.F., Xu, F., Sun, R.C., Jones, G.L., Baird, M.: Structure and thermal property of alkaline hemicellulose from steam exploded Phyllostachys pubescens. Carbohydr. Polym. 101, 1191–1197 (2014)

    Article  Google Scholar 

  34. Jeguirim, M., Trouvé, G.: Pyrolisis characterization and kinetics of Arundo donax using thermogravimetric analysis. Bioresour. Technol. 100, 4026–4031 (2009)

    Article  Google Scholar 

  35. Biagini, E., Tognotti, L.: A generalized procedure for devolatilization of biomass fuels based on the chemical components. Energy Fuel 28, 614–623 (2014)

    Article  Google Scholar 

  36. Carvalho, W.S., Oliveira, T.J., Cardoso, C.R., Ataíde, C.H.A.: Thermogravimetric analysis and analytical pyrolisis of a variety of lignocellulosic sorghum. Chem. Eng. Res. Des. (2014). doi:10.1016/j.cherd.2014.11.010

    Google Scholar 

  37. Ouajai, S., Shanks, R.A.: Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym. Degrad. Stab. 89, 327–335 (2005)

    Article  Google Scholar 

  38. White, J.E., Catallo, W.J., Legendre, B.L.: Biomass pyrolisis kinetics: a comparative critical review with relevant agricultural residue case studies. J. Anal. Appl. Pyrolysis. 91, 1–33 (2011)

    Article  Google Scholar 

  39. Vyazovkin, S., Chrissafis, K., Di Lorenzo, M.L., Koga, N., Pijolat, M., Roduit, B., Sbirazzuoli, N., Sunol, J.J.: ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim. Acta 590, 1–23 (2014)

    Article  Google Scholar 

  40. Di Girolamo, G., Grigatti, M., Barbanti, L., Angelidaki, I.: Effects of hydrothermal pre-treatments on Giant reed (Arundo donax) methane yield. Bioresour. Technol. 147, 152–159 (2013)

    Article  Google Scholar 

  41. Sharma, S.K., Mishra, I.M., Sharma, M.P., Saini, J.S.: Effect of particle size on biogas generation from biomass residues. Biomass 17, 251–263 (1988)

    Article  Google Scholar 

  42. Møller, H.B., Sommer, S.G., Ahring, B.K.: Methane productivity of manure, straw and solid fraction of manure. Biomass Bioenergy 26, 485–495 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Grigatti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure 4S

Experimental and fitted TG mass loss (%, normalized) of raw and treated biomass (NaOH 6 %) (PDF 247 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigatti, M., Montecchio, D., Francioso, O. et al. Structural and Thermal Investigation of Three Agricultural Biomasses Following Mild-NaOH Pretreatment to Increase Anaerobic Biodegradability. Waste Biomass Valor 6, 1135–1148 (2015). https://doi.org/10.1007/s12649-015-9423-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9423-y

Keywords

Navigation