Skip to main content

Advertisement

Log in

Analysis of methane yields from energy crops and agricultural by-products and estimation of energy potential from sustainable crop rotation systems in EU-27

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Currently an increasing demand for renewable energy can be observed. A part of this demand could be covered by the production of energy from agrarian biomass. Due to the limited availability of arable land, food and feed production are starting to compete for agrarian resources. A way out of this dilemma is to develop concepts that are based on otherwise unused agrarian biomass like straw and include new technologies for the fermentation of lignocellulosic biomass. In this paper, the energy potentials of two different cropping systems are compared. In the energy-based crop rotation system all crops were used either for biogas or ethanol production. In the biorefinery-based approach, the various crops were used in cascades for the production of food as well as feed. Experimental laboratory work and field trials were combined to calculate energy and biomass yields of the crops under investigation. The results demonstrate that steam explosion pretreatment of wheat straw led to a 30% increase in the specific methane yield. The calculated energy output of the biorefinery-based crop rotation system amounted to a total of 126 GJ ha−1 year−1. Extrapolating this energy output to the total arable land of the EU-27 member states, 13,608 PJ of energy could be produced. Therefore, biorefinery-based crop rotation systems could provide approximately three times more energy to the European population than energy-based crop rotation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DM:

Dry matter

XA:

Raw ash

XP:

Raw protein

XL:

Raw fat

XF:

Raw fibre

XX:

N-free extracts

WPS:

Whole plant silage

COE:

Crude oil equivalent

References

  • AGES (2007) Austrian species list: agricultural crops. [Österreichische beschreibende Sortenliste: landwirtschaftliche Pflanzenarten] Austrian Republic. Institute of Plant Varieties, Vienna

    Google Scholar 

  • Amon T, Amon B, Kryvoruchko V, Machmüller A, Hopfner-Sixt K, Bodiroza V, Hrbek R, Friedel J, Pötsch E, Wagentristl H, Schreiner M, Zollitsch W (2007) Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour Technol 98:3204–3212. doi:10.1016/j.biortech.2006.07.007

    Article  CAS  Google Scholar 

  • Aufhammer W (1998) Crop and other types of Cereal – Meaning, Use and Cultivation | [Getreide und andere Körnerfruchtarten - Bedeutung, Nutzung und Anbau]. UTB, Eugen Ulmer, Stuttgart

  • Bauer A, Hrbek R, Amon B, Kryvoruchko V, Bodiroza V, Zollitsch W, Liebmann B, Pfeffer M, Friedl A, Amon T (2007) Potential of biogas production in sustainable biorefinery concepts. 15th European biomass conference and exhibition, 7–11 May 2007. In: Proceedings of the 15th EBCE, CD-Rom, OD 7.1, Italy and WIP-Munich, Germany

  • Beitz W, Küttner KH (1987) Dubbel pocket-book for engineering. (Dubbel Taschenbuch für den Maschinenbau). Springer, Berlin

    Google Scholar 

  • Bo Holm Nielsen J, Oleskowicz-Popiel P, Al Seadi T (2007) Energy crop potentials for bioenergy in EU-27. 15th European biomass conference and exhibition, 7–11 May 2007. In: Proceedings of the 15th EBCE, CD-Rom, OD 1.3, Italy and WIP-Munich, Germany

  • Boyle WC (1976) Energy recovery from sanitary landfills—a review. In: Microbial energy conversion: the proceedings of a seminar, Oxford, Pergamon Press, pp 119–138

  • CGEE (2007) LA-EU biofuels research workshop, final report. 23–27 April 2007. Centre for Strategic Studies and Management, CGEE, Sao Paulo

  • Döhler H, Hartmann S, Eckel H (2006) Energy crop rotation, materials cycles, soil fertility. (Energiefruchtfolgen, Stoffkreisläufe, Bodenfruchtbarkeit): Fachtagung 5 Oktober 2006. Bonn, Proceedings pp 65–78

  • European Commission (2006) Biofuels in the European Union—a vision for 2030 and beyond. Final report of the Biofuels Research Advisory Council. EUR 22066, Directorate-General for Research Sustainable Energy Systems

  • EUROSTAT (2008) Europe in figures—Eurostat yearbook 2008. European Communities, Luxembourg

  • FAO (2008) The State of Food and Agriculture 2008. Biofuels: prospects, risks and opportunities. Agricultural Biotechnology-meeting the needs of the poor Rome. Food and Agriculture Organization of the United Nations

  • Fernando S, Adhikari S, Chandrapal C, Murali N (2006) Biorefineries: current status, challenges, and future direction. Eng Fuels 20:1727–1737. doi:10.1021/ef060097w

    Article  CAS  Google Scholar 

  • Freyer (2003) Crop rotation. (Fruchtfolgen). Eugen Ulmer, Stuttgart

  • Gangl (2004) Ethanol production from starch raw materials for fuel purposes. (Ethanolherstellung aus stärkehaltigen Rohstoffen für Treibstoffzwecke). Diploma Thesis, Institute of Agricultural and Forestry Economics, University of Natural Resources and Applied Life Sciences, Vienna

  • Gerin PA, Vliegen F, Jossart J-M (2007) Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion. Bioresour Technol 99(7):2620–2627. doi:10.1016/j.biortech.2007.04.049

    Google Scholar 

  • Holz J, Koch H (2008) Key data for crop specific changes in soil humus content in humus equivalent (kg humus-C) per hectare and year. [Kennzahlen zur fruchtartspezifischen Veränderung des Humusvorrates (Humusbedarf) des Bodens in Humusäquivalenten (kg Humuskohlenstoff) pro ha und Jahr]. Chamber of Agriculture Nordrhein-Westfalen, Münster. http://www.lk-wl.de/fachangebot/ackerbau/pdf/tabellen-humus.pdf. 12 February 2009

  • Kamm B, Kamm M (2004a) Biorefinery-systems. Chem Biochem Eng Q 18:1–6

    CAS  Google Scholar 

  • Kamm B, Kamm M (2004b) Principles of biorefineries. Appl Microbiol Biotechnol doi:10.1007/s00253-003-1537-7

  • Karpenstein-Machan M (2005) Energy crop production for biogas plant operators. (Energiepflanzenbau für Biogasanlagenbetreiber). DLG-Verlags GmbH, Frankfurt am Main

    Google Scholar 

  • KTBL (2005) Key data for agriculture. (Faustzahlen für die Landwirtschaft). Kuratorium für Bauwesen in der Landwirtschaft e.V, Darmstadt

    Google Scholar 

  • Leonhartsberger C, Bauer A, Lyson D, Kryvoruchko V, Bodiroza V, Milovanovic D, Friedel JK, Rinnhofer T, Amon T (2008) Sustainable biogas production through the integration of high-yielding and site-adapted energy crops into crop rotation systems. In: 18th international congress of chemical and process engineering, 24–28 August 2008, summaries vol 4, PRES2008 Prag; ISBN: 978-80-02-02051-6

  • Liebmann B, Pfeffer M, Wukovits W, Bauer A, Amon T, Gwehenberger G, Narodoslawsky M, Friedl A (2007) Modelling of small-scale bioethanol plants with renewable energy supply. 10th Conference on process integration, modelling and optimisation for energy saving and pollution reduction, PRES 2007, ISBN: 88-901915-4-6, Chem Eng Trans12:309–314

  • Mitchell D (2008) A note on rising food prices. Policy research working paper. 4682. The World Bank Development prospect Group, Washington, DC

    Book  Google Scholar 

  • Møller HB, Sommer SG, Ahring BK (2004) Methane productivity of manure, straw and solid fractions of manure. Biom Bioeng doi:10.1016/j.biombioe.2003.08.008

  • Naumann C, Bassler R (1993) Chemical analysis of feeds. (Die chemische Untersuchung von Futtermittel), 3rd edn. VDLUFA, Darmstadt

    Google Scholar 

  • Ponton JW (2009) Biofuels: thermodynamic sense and nonsense. J Clean Prod. doi:10.1016/j.jclepro.2009.02.003

  • Sharma SK, Mishra IM, Sharma MP, Saini JS (1988) Effect of particle size on biogas generation from biomass residues. Biomass. doi:10.1016/0144-4565(88)90107-2

  • Sims R, Taylor M, Saddler J, Mabee W (2008) From 1st to 2nd generation biofuel technologies. An overview of current industry and RD&D activities–report. International Energy Agency, Paris

  • Smith W (2005) The biorefinery concept: a platform for the delivery of renewable chemicals. Manuscript, National Non-Food Crops Centre

  • DIN standard (1985) 38 414-8: German standard methods for the examination of water, waste water and sludge; sludge and sediments (group S): determination of the amenability to anaerobic digestion. Deutsches Institut für Normung e. V, Berlin, p 8

  • Theiner J (2008) Elemental C/H/N/S Analysis/2009. Internal standard. Microanalytical Laboratory, University of Vienna, Vienna, Austria. http://www.univie.ac.at/Mikrolabor/ind_eng.htm. Accessed 12 February 2009

  • Torres-Castillo R, Llabres-Luengo P, Mata-Alvarez J (1995) Temperature effect on anaerobic digestion of bedding straw in a one-phase system at different inoculum concentration. Agric Ecosys Env. doi:10.1016/0167-8809(95)00592-G

  • Tricase C, Lombardi M (2009) State of the art and prospects of Italian biogas production from animal sewage: technical-economic considerations. Renew Energy doi:10.1016/j.renene.2008.06.013

  • Van Soest PJ, Wine RH (1967) Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. J Assoc Off Agric Chem 50:50–55

    Google Scholar 

  • VDI (2006) VDI standard 4630: fermentation of organic materials. Characterisation of substrate, sampling, collection of material data, fermentation tests. VDI association, energy technology

  • Weißbach F, Kuhla S (1995) Substance losses in determining the dry matter content of silage and green fodder: arising errors and possibilities of correction. (Stoffverluste bei der Bestimmung des Trockenmassegehaltes von Silagen und Grünfutter: Möglichkeiten der Korrektur). Animal feeding 3 [Übers. Tierernährung 23], pp 189–214

Download references

Acknowledgments

This project was carried out and financed within the scope of the Austrian Program on Technologies for Sustainable Development, “Energy systems of tomorrow”. This program is an initiative of the Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT). Additional funding was provided by the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Bauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, A., Leonhartsberger, C., Bösch, P. et al. Analysis of methane yields from energy crops and agricultural by-products and estimation of energy potential from sustainable crop rotation systems in EU-27. Clean Techn Environ Policy 12, 153–161 (2010). https://doi.org/10.1007/s10098-009-0236-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-009-0236-1

Keywords

Navigation