Skip to main content

Advertisement

Log in

Biogas Production from Maize: Current State, Challenges and Prospects. 2. Agronomic and Environmental Aspects

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Several European countries have expanded the traditional use of anaerobic digestion, i.e. waste treatment, to energy generation through attractive incentives. In some countries, it is further promoted by additional payments to generate biogas from biomass. This review aims to summarise agronomic aspects of methane production from maize, to address resulting abiotic environmental effects and to highlight challenges and prospects. The opportunities of biogas production are manifold, including the mitigation of climate change, decreasing reliance on fossil fuels and diversification of farm income. Although the anaerobic digestion of animal manure is regarded as the most beneficial for reducing greenhouse gas (GHG) emission from manure storage, the energy output can be substantially enhanced by co-digesting manure and maize, which is the most efficient crop for substrate provision in many regions. Although first regarded as beneficial, the rush into biogas production strongly based on maize (Zea mays ssp. mays) is being questioned in view of its environmental soundness. Main areas of concern comprise the spatial concentration of biogas plant together with the high amount of digestate and resulting pollution of surface and ground water, emission of climate-relevant gases and detrimental effects of maize cultivation on soil organic matter degradation. Key challenges that have been identified to enhance the sustainability of maize-based biogas production include (1) the design of regionally adapted maize rotations, (2) an improved management of biogas residues (BR), (3) the establishment of a more comprehensive data base for evaluating soil C fluxes in maize production as well as GHG emissions at the biogas plant and during BR storage and (4) the consideration of direct and indirect land use change impact of maize-based biogas production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BR:

Biogas residues

GHG:

Greenhouse gas

OM:

Organic matter

SOC:

Soil organic carbon

TAN:

Total ammonia nitrogen

References

  1. Alburquerque JA, de la Fuente C, Bernal MP (2011) Chemical properties of anaerobic digestates affecting C and N dynamics in amended soils. Agric Ecosyst Environ. doi:10.1016/j.agee.2011.03.007

  2. Amon B, Kryvoruchko V, Amon T, Zechmeister-Boltenstern S (2006) Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agric Ecosyst Environ 112:153–162

    Article  CAS  Google Scholar 

  3. Amos B, Walters WT (2006) Maize root biomass and net rhizodeposited carbon: an analysis of the literature. Soil Sci Soc Am J 70:1489–1503

    Article  CAS  Google Scholar 

  4. Angers DA, Voroney RP, Cote D (1995) Dynamics of soil organic matter and corn residues affected by tillage practices. Soil Sci Soc Am J 59:1311–1315

    Article  CAS  Google Scholar 

  5. Arnold K (2011) Greenhouse gas balance of biomethane—which substrates are suitable? Energy Sci Technol 1:67–75

    CAS  Google Scholar 

  6. Arthurson V (2009) Closing the global energy and nutrient cycles through application of biogas residue to agricultural land—potential benefits and drawbacks. Energies 2:226–242

    Article  CAS  Google Scholar 

  7. Asam Z, Poulsen TG, Nizami A-S, Rafique R, Kiely G, Murphy JD (2011) How can we improve biomethane production per unit of feedstock in biogas plants? Appl Energ 88:2013–2018

    Article  CAS  Google Scholar 

  8. Aschmann V, Jin W, Effenberger M, Gronauer A (2009) Emissionsproblematik und Energieeffizienz biogasbetriebener BHKW im Verlauf der Standzeit. In: Bayerische Landesanstalt für Landwirtschaft (ed) Internationale Wissenschaftstagung Biogas Science 2009, Band 1, pp 193–200. http://www.lfl.bayern.de/publikationen/daten/schriftenreihe/p_37628.pdf. Accessed 16 Mar 2012

  9. Asmus F, Linke B (1987) Zur pflanzenbaulichen verwertung von Gülle-Faulschlamm aus der biogasgewinnung. Feldwirtschaft 28:354–355

    Google Scholar 

  10. Bachmeier J, Effenberger M, Gronauer A (2010) Greenhouse gas balance and resource demand of biogas plants in agriculture. Eng Life Sci 10:560–569

    Article  CAS  Google Scholar 

  11. Bachmeier J, Gronauer A (2007) Klimabilanz von Biogasstrom. http://www.lfl.bayern.de/publikationen/daten/informationen/p_27453.pdf. Accessed 30 Oct 2011

  12. Baker JM, Griffis TJ (2011) Evaluating the potential use of winter cover crops in corn-soybean systems for sustainable co-productioin of food and fuel. Agric Forest Meteorol 149:2120–2132

    Article  Google Scholar 

  13. Baldocchi D (2008) Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot 56:1–26

    Article  CAS  Google Scholar 

  14. Balesdent J, Mariotti A, Boisgontier D (1990) Effect of tillage on soil organic carbon mineralization estimated from 13C abundance in maize fields. J Soil Sci 41:587–596

    Article  CAS  Google Scholar 

  15. Berg W, Brunsch R, Pazsiczki I (2006) Greenhouse gas emissions from covered slurry compared with uncovered during storage. Agric Ecosyst Environ 112:129–134

    Article  CAS  Google Scholar 

  16. Bertora C, Alluvione F, Zavattaro L, van Groenigen JW, Velthof G, Grignani C (2008) Pig slurry treatment modifies slurry composition, N2O, and CO2 emissions after soil incorporation. Soil Biol Biochem 40:1999–2006

    Article  CAS  Google Scholar 

  17. Bertora C, Zavattaro L, Sacco D, Monaco S, Grignani C (2009) Soil organic matter dynamics and losses in manured maize-based forage systems. Eur J Agron 30:177–186

    Article  Google Scholar 

  18. Bleken MA, Herrmann A, Haugen LE, Taube F, Bakken L (2009) SPN: a model for the study of soil–plant nitrogen fluxes in silage maize cultivation. Eur J Agron 30:283–295

    Article  CAS  Google Scholar 

  19. Börjesson P, Berglund M (2007) Environmental system analysis of biogas systems—Part II: the environmental impact of replacing various reference systems. Biomass Bioenerg 31:326–344

    Article  CAS  Google Scholar 

  20. Börjesson P, Mattiasson B (2008) Biogas as a resource-efficient vehicle fuel. Trends Biotechnol 26:7–13

    Article  PubMed  CAS  Google Scholar 

  21. Breitschuh G, Gernand U (2010) Nachhaltigkeit im Maisanbau. Mais 1(2010):4–7

    Google Scholar 

  22. Bühle L, Stülpnagel R, Wachendorf M (2011) Comparative life cycle assessment of the integrated generation of solid fuel and biogas from biomass (IFBB) and whole crop digestion (WCD) in Germany. Biomass Bioenerg 35:363–373

    Article  CAS  Google Scholar 

  23. Capristo PR, Rizzalli RH, Andrade FH (2007) Ecophysiological yield components of maize hybrids with contrasting maturity. Agron J 99:1111–1118

    Article  Google Scholar 

  24. Carter MS, Ambus P (2009) Greenhouse gas emissions from cultivation of energy crops—is it important? ICROFS news 4(2009):2–3

    Google Scholar 

  25. Chadwick DR, Pain BF (1997) Methane fluxes following slurry applications to grassland soils: laboratory experiments. Agric Ecosyst Environ 63:51–60

    Article  Google Scholar 

  26. Chantigny MH, Angers DA, Rochette P, Bélanger G, Massé D (2007) Gaseous nitrogen emissions and forage nitrogen uptake on soils fertilized with raw and treated swine manure. J Environ Qual 36:1864–1872

    Article  PubMed  CAS  Google Scholar 

  27. Chantigny MH, Rochette P, Angers DA, Massé D, Côté D (2004) Ammonia volatilization and selected soil characteristics following application of anaerobically digested pig slurry. Soil Sci Soc Am J 68:306–312

    Article  CAS  Google Scholar 

  28. Chen R, Senbayram M, Lin X, Dittert K (2011) Origin of positive δ13C of emitted CO2 from soils after application of biogas residues. Soil Biol Biochem 43:2194–2199

    Article  CAS  Google Scholar 

  29. Claus S, Wienforth B, Sieling K, Kage H, Senbayram M, Dittert K et al (2012) Greenhouse gas balance of bioenergy cropping systems under the environmental conditions of Schleswig–Holstein. Grassland Sci Eur 17:601–603

  30. Claus S, Wienforth B, Sieling K, Kage H, Taube F, Herrmann A (2011) Energy balance of bioenergy cropping systems under the environmental conditions of Schleswig–Holstein. Grassl Sci Europe 16:365–367

    Google Scholar 

  31. Clemens J, Trimborn M, Weiland P, Amon B (2006) Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agric Ecosyst Environ 112:171–177

    Article  CAS  Google Scholar 

  32. Collins HP, Alva AK, Streubel JD, Fransen SF, Frear C, Chen S et al (2011) Greenhouse gas emissions from an irrigated silt loam soil amended with anaerobically digested dairy manure. Soil Sci Soc Am J 75:2206–2216

    Article  CAS  Google Scholar 

  33. Constantin J, Beaudoin N, Laurent F, Cohan J-P, Duyme F, Mary B (2011) Cumulative effects of catch crops on nitrogen uptake, leaching and net mineralization. Plant Soil 341:137–154

    Article  CAS  Google Scholar 

  34. Constantin J, Mary B, Laurent F, Aubrion G, Fontaine A, Kerveillant P et al (2010) Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments. Agric Ecosyst Environ 135:268–278

    Article  CAS  Google Scholar 

  35. Cuhls C, Mähl B, Clemens J (2011) Treibhausgas-emissionen aus biogasanlagen. UmweltMagazin 1(2):44–45

    Google Scholar 

  36. Dabbagh Mohammadi Nassab A, Amon T, Kaul H-P (2011) Competition and yield in intercrops of maize and sunflower for biogas. Ind Crop Prod 34:1203–1211

    Article  CAS  Google Scholar 

  37. DBFZ - Deutsches BiomasseForschungsZentrum (2011) Monitoring zur Wirkung des Erneuerbare-Energien-Gesetzes (EEG) auf die Entwicklung der Stromerzeugung aus Biomasse. http://www.erneuerbare-energien.de/inhalt/36204/4593/. Accessed 16 Mar 2012

  38. De Klein CAM, Sherlock RR, Cameron KC, van der Weerden TJ (2001) Nitrous oxide emissions from agricultural soils in New Zealand—a review of current knowledge and directions for future research. J Roy Soc New Zeal 31:543–574

    Article  Google Scholar 

  39. Demirbas AH, Demirbas I (2007) Importance of rural bioenergy for developing countries. Energy Convers Manage 48:2386–2398

    Article  Google Scholar 

  40. Dittert K, Senbayram M, Wienforth B, Kage H, Muehling KH (2009). Greenhouse gas emissions in biogas production systems. The Proceedings of the International Plant Nutrition Colloquium XVI, UC Davis. http://www.escholarship.org/uc/item/18p5q83f. Accessed 16 Mar 2012

  41. Dunfield PF (2007) The soil methane sink. In: Reay D, Hewitt CN, Smith K, Grace J (eds) Greenhouse gas sinks. CABI, Wallingford, pp 152–170

    Chapter  Google Scholar 

  42. Ebertseder T, Groß J (2008) Ausweitung des energiepflanzenanbaus aus sicht des pflanzenbaus und des nährstoffmanagements. In: Bundesarbeitskreis Düngung (BAD) (ed) Klimawandel und bioenergie—pflanzenproduktion im spannungsfeld zwischen politischen vorgaben und ökonomischen rahmenbedingungen. BAD, Frankfurt, pp 131–147

    Google Scholar 

  43. EC—European Commission (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. OJL 327, 22 Dec 2000, pp 1–73

  44. EC—European Commission (2001) Directive 2001/81/EC of the European Parliament and of the Council of 23 Oct 2001 on national emission ceilings for certain atmospheric pollutants. LJL 309, 27 Nov 2001, pp 22–30

  45. EC—European Commission (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC

  46. Eder B (2010) Pflanzenbauliche Untersuchungen zum Einfluss von Genotyp und Anbauverfahren auf die Ertragsbildung und das Methanbildungspotenzial von Mais (Zea mays L.). Doctoral thesis, Technische Universität München

  47. Eder B, Papst C, Darnhofer B, Eder J, Schmid H, Hülsbergen KJ (2009b) Energie- und CO2-Bilanz für Silomais zur Biogaserzeugung vom Anbau bis zur Stromeinspeisung. In: Bayerische Landesanstalt für Landwirtschaft (ed) Internationale Wissenschaftstagung Biogas Science 2009, Band 3, pp 717–719. http://www.lfl.bayern.de/publikationen/daten/schriftenreihe/p_37630.pdf. Accessed 16 Mar 2012

  48. European Environment Agency (EEA) (2007) Estimating the environmentally compatible bioenergy potential from agriculture. EEA Technical report no. 12/2007

  49. EurObserv’ER (2010) Biogas barometer. http://www.eurobserv-er.org/pdf/baro200b.asp. Accessed 16 Mar 2012

  50. European Parliament and Council (2001) Directive 2001/77/EC of the European Parliament and of the Council of 27 Sept 2001 on the promotion of electricity produced from renewable energy sources in the internal electricity market. Off J Eur Comm L 283/33–40

    Google Scholar 

  51. Fachverband Biogas (2011) Biogas segment statistics 2011. http://www.biogas.org/edcom/webfvb.nsf/id/DE_Branchenzahlen. Accessed 16 Mar 2012

  52. Faulstich M (2008) Energie aus Biomasse. Energiekongress der Bayerischen Staatsregierung ‘Sichere Energie bezahlbar und klimafreundlich’, 4 June 2008, Munich, Germany. http://www.energiekongress-bayern.de/vortraege.htm. Accessed 16 Mar 2012

  53. Flesh TK, Desjardins RL, Worth D (2011) Fugitive methane emissions from an agricultural biodigester. Biomass Bioenerg 35:3927–3935

    Article  CAS  Google Scholar 

  54. Flessa H, Ludwig B, Heil B, Merbach W (2000) The origin of soil organic C, dissolved organic C and respiration in a long-term maize experiment in Halle, Germany, determined by 13C natural abundance. J Plant Nutr Soil Sci 163:157–163

    Article  CAS  Google Scholar 

  55. FNR—Fachagentur für nachwachsende Rohstoffe (2009) Biogas-Messprogramm II. http://www.fnr-server.de/ftp/pdf/literatur/pdf_385-messprogramm_ii.html. Accessed 16 Mar 2012

  56. Fritsche UR, Sims REH, Monti A (2010) Direct and indirect land-use competition issues for energy crops and their sustainable production—an overview. Biofuel Bioprod Bior 4:692–704

    Article  CAS  Google Scholar 

  57. Gärtner S, Münch J, Reinhardt G, Vogt R (2008) Ökobilanzen. Materialband E. In: R Vogt et al (eds) Optimierungen für einen nachhaltigen Ausbau der Biogaserzeugung und -nutzung in Deutschland, pp 86–143. http://www.erneuerbare-energien.de/inhalt/43280/40870/. Accessed 16 Mar 2012

  58. Global Bioenergy Partnership (GBEP) (2011) 24 Sustainability indicators for bioenergy. http://www.globalbioenergy.org/programmeofwork/sustainability/gbep-report-on-sustainability-indicators-for-bioenergy/en/. Accessed 16 Mar 2012

  59. Gericke D (2009) Measurement and modelling of ammonia emissions after field application of biogas slurries. Doctoral thesis, Christian-Albrechts-Universität Kiel, Germany

  60. Gericke D, Bornemann L, Kage H, Pacholski A (2012) Modelling ammonia losses after field application of biogas slurry in energy crop rotations. Water Air Soil Poll 223:29–47. doi:10.1007/s11270-011-0835-4

    Article  CAS  Google Scholar 

  61. Gerin PA, Vliegen F, Jossart J-M (2008) Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion. Biores Technol 99:2620–2627

    Article  CAS  Google Scholar 

  62. Gioelli F, Dinuccio E, Balsari P (2011) Residual biogas potential from the storage tanks of non-separated digestate and digested liquid fraction. Biores Technol 102:10248–10251

    Article  CAS  Google Scholar 

  63. Gooch CA, Inglis SF, Wright PE (2007) Biogas distributed generation systems evaluation and technology transfer. NYSERDA Project No. 6597 Interim Report. http://www.manuremanagement.cornell.edu/Pages/General_Docs/Reports/NYSERDA_Interim_Report_Final_2007.pdf. Accessed 30 Oct 2011

  64. Grignani C, Zavattaro L, Sacco D, Monaco S (2007) Production, nitrogen and carbon balance of maize-based forage systems. Eur J Agron 26:442–453

    Article  CAS  Google Scholar 

  65. Güngör K, Karthikeyan KG (2008) Phosphorus forms and extractability in dairy manure: a case study for Wisconsin on-farm anaerobic digesters. Biores Technol 99:425–436

    Article  CAS  Google Scholar 

  66. Gutser R, Dosch P (1996) Cattle-slurry-15N turnover in a long-term lysimeter trial. Proceedings of the International Symposium on Fertilizers and Environment, 26–29 Sept, Salamanca

  67. Gutser R, Ebertseder T, Weber A, Schraml M, Schmidhalter U (2005) Short-term and residual availability of nitrogen after long-term application of organic fertilizers on arable land. J Plant Nutr Soil Sci 168:439–446

    Article  CAS  Google Scholar 

  68. Heggenstaller AH, Liebman M, Anex RP (2009) Growth analysis of biomass production in sole-crop and double-crop corn systems. Crop Sci 49:2215–2224

    Article  Google Scholar 

  69. Herrmann A, Sieling K, Wienforth B, Taube F, Kage H (2012) Short-term effects of biogas residue application on yield performance and N balance parameters of maize in different cropping systems. J Agric Sci 49(6):2215--2224

    Google Scholar 

  70. Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P (2009) The future of anaerobic digestion and biogas utilization. Biores Technol 100:5478–5484

    Article  CAS  Google Scholar 

  71. IEA - International Energy Agency (2005). Biogas production and utilisation. IECD/IEA, Paris. http://www.ieabioenergy.com/MediaItem.aspx?id=56. Accessed 16 Mar 2012

  72. IEA – International Energy Agency (2011) Renewables information 2011. OECD/IEA, Paris

    Google Scholar 

  73. Jans WWP, Jacobs CMJ, Kruijt B, Elbers JA, Barendse S, Moors EJ (2010) Carbon exchange of maize (Zea mays L.) crop: influence of phenology. Agric Ecosyst Environ 139:316–324

    Article  Google Scholar 

  74. Jarecki MK, Parkin TB, Chan AS, Hatfield JL, Meek DW, Jones R (2008) Greenhouse gases emission from two soils under N fertilizer and swine slurry. J Environ Qual 37:1432–1438

    Article  PubMed  CAS  Google Scholar 

  75. Johnson JM-F, Allmaras RR, Reicosky DC (2006) Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database. Agron J 98:622–636

    Article  CAS  Google Scholar 

  76. Jorgensen U, Petersen BM (2006) Interactions between biomass energy technologies and nutrient and carbon balances at the farm level. In: Technology for recycling of manure and organic residues in a whole-farm perspective, vol I. DIAS report plant production no. 122, pp 49–55

  77. Jungkunst HF, Freibauer A, Neufeldt H, Bareth G (2006) Nitrous oxide emissions from agricultural land use in Germany—a synthesis of available annual field data. J Plant Nutr Soil Sci 169:341–351

    Article  CAS  Google Scholar 

  78. Jungmeier G, Spitzer J (2001) Greenhouse gas emissions of bioenergy from agriculture compared to fossil energy heat and electricity supply. Nutr Cycl Agroecosyst 60:267–273

    Article  CAS  Google Scholar 

  79. Jury C, Benetto E, Koster D, Schmitt B, Welfring J (2010) Life cycle assessment of biogas production by monofermentation of energy crops and injection into the natural grid gas. Biomass Bioenerg 34:54–66

    Article  CAS  Google Scholar 

  80. Karpenstein-Machan M (2001) Sustainable cultivation concepts for domestic energy production from biomass. Cr Rev Plant Sci 20:1–14

    Article  Google Scholar 

  81. Kirchmann H, Lundvall A (1993) Relationship between N immobilization and volatile fatty acids in soil after application of pig and cattle slurry. Biol Fertil Soils 15:161–164

    Article  CAS  Google Scholar 

  82. Klimiuk E, Pokoj T, Budzynski W, Dubis B (2010) Theoretical and observed biogas production from plant biomass of different fibre contents. Biores Technol 101:9527–9535

    Article  CAS  Google Scholar 

  83. Klinski S (2008) Eignung der Biomassenachhaltigkeitsverordnung (BioNachV) zur Anbindung an das Erneuerbare-Energien-Gesetz (EEG). Materialband N. In: R Vogt et al (eds) Optimierungen für einen nachhaltigen Ausbau der Biogaserzeugung und -nutzung in Deutschland, pp 86–143. http://www.erneuerbare-energien.de/inhalt/43280/40870/. Accessed 16 Mar 2012

  84. Kristiansen SM, Hansen EM, Jensen LS, Christensen BT (2005) Natural 13C abundance and carbon storage in Danish soils under continuous silage maize. Eur J Agron 22:107–117

    Article  CAS  Google Scholar 

  85. Liang BC, Gregorich EG, Schnitzer M, Monreal CM, MacKenzie AF, Voroney RP et al (1998) Retention and turnover of corn residue carbon in some eastern Canadian soils. Soil Sci Soc Am J 62:1361–1366

    Article  CAS  Google Scholar 

  86. Liebetrau J, Daniel-Gromke J, Reuschel C, Oehmichen K, Clemens J, Hafermann C et al (2011) Bewertung klimarelevanter Gase aus landwirtschaftlichen Biogasanlagen auf der Basis von Emissionsmessungen. In: KTBL (ed) Biogas in der Landwirtschaft – Stand und Perspektiven. KTBL-Schrift 488, pp 185-195

  87. Loria ER, Sawyer JE (2005) Extractable soil phosphorus and inorganic nitrogen following application of raw and anaerobically digested swine manure. Agron J 97:879–885

    Article  Google Scholar 

  88. Ludwig B, John B, Ellerbrock R, Kaiser M, Flessa H (2003) Stabilization of carbon from maize in a sandy soil in a long-term experiment. Eur J Soil Sci 54:117–126

    Article  CAS  Google Scholar 

  89. Malcolm SA, Aillery M, Weinberg M (2009) Ethanol and a changing agricultural landscape. Economic research report no. 86. US Department of Agriculture, Economic Research Service

  90. Maranon E, Salter AM, Castrillon L, Heaven S, Fernandez-Nava Y (2011) Reducing the environmental impact of methane emissions from dairy farms by anaerobic digestion of cattle waste. Waste Mange 31:1745–1751

    Article  CAS  Google Scholar 

  91. Massé DI, Croteau F, Masse L (2007) The fate of crop nutrients during digestion of swine manure in psychrophilic anaerobic sequencing batch reactors. Biores Technol 98:2819–2823

    Article  CAS  Google Scholar 

  92. Merz H-U, Trösch W (1989) Vergleichende untersuchungen zur N-Bilanz unter Dactylis glomerata L. nach Gülle-, biogas-Gülle- und mineraldüngung. 2. Mitteilung: nitratauswaschung und nährstoffgehalte im Boden. D wirtschaftseig Futter 35:226–237

    Google Scholar 

  93. Messner H (1988) Düngewirkung anerob fermentierter und behandelter Gülle. Doctoral thesis, Technical University, München, Germany

  94. Messner H, Amberger A (1987) Composition, nitrification and fertilizing effect of anaerobically fermented slurry. Proc. 4th CIEC Symp. Braunschweig-Völkenrode, vol 1, pp 125–130

  95. Meyer-Aurich A, Schattauer A, Hellebrand HJ, Klauss H, Plöchl M, Berg W (2012) Impact of uncertainties on greenhouse gas mitigation potential of biogas production from agricultural resources. Renew Energy 37:277–284

    Article  CAS  Google Scholar 

  96. Miguez FE, Bollero GA (2006) Winter cover crops in Illinois: evaluation of ecophysiological characteristics of corn. Crop Sci 46:1536–1545

    Article  Google Scholar 

  97. Möller K, Schulz R, Müller T (2011) Effects of setup of centralized biogas plants on crop acreage and balances of nutrients and soil humus. Nutr Cycl Agroecosyst 89:303–312

    Article  CAS  Google Scholar 

  98. Möller K, Schulz R, Müller T (2011) Substrate inputs, nutrient flows and nitrogen loss of two centralized biogas plants in southern Germany. Nutr Cycl Agroecosyst 87:307–325

    Article  CAS  Google Scholar 

  99. Möller K, Stinner W (2010) Effects of organic wastes digestion for biogas production on mineral nutrient availability of biogas effluents. Nutr Cycl Agroecosyst 87:395–413

    Article  Google Scholar 

  100. Möller K, Vogt N (2003) Einfluss der Zugabe von Rohphosphat in den Biogasfermenter auf die Düngewirkung fermentierter Rindergülle. In: B Freyer (ed) Beiträge zur 7. Wissenschaftstagung zum Ökologischen Landbau, 24–26 February 2003, Vienna, Austria, pp 519–520

  101. Monaco S, Hatch DJ, Sacco D, Bertora C, Grignani C (2008) Changes in chemical and biochemical soil properties induced by 11-yr repeated additions of different organic materials in maize-based forage systems. Soil Biol Biochem 40:608–615

    Article  CAS  Google Scholar 

  102. Moors EJ, Jacobs CMJ, Jans W, Supit I, Bernhofer C, Buchman N et al (2010) Variability in carbon exchange of European croplands. Agric Ecosyst Environ 139:325–335

    Article  Google Scholar 

  103. Mosier A, Kroeze C, Nevison C, Oenema O, Seitzinger S, van Cleemput O (1998) Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr Cycl Agroecosyst 52:225–248

    Article  CAS  Google Scholar 

  104. Nevens F, Reheul D (2001) Crop rotation versus monoculture; yield, N yield and ear fraction of silage maize at different levels of mineral N fertilization. Neth J Agric Sci 49:405–425

    Google Scholar 

  105. Nevens F, Reheul D (2002) The nitrogen- and non-nitrogen-contribution effect of ploughed grass leys on the following arable forage crops: determination and optimum use. Eur J Agron 16:57–74

    Article  Google Scholar 

  106. Nielsen DA, Nielsen LP, Schramm A, Revsbech NP (2010) Oxygen distribution and potential ammonia oxidation in floating, liquid manure crusts. J Environ Qual 39:1813–1820

    Article  PubMed  CAS  Google Scholar 

  107. Novak SM, Fiorelli JL (2010) Greenhouse gases and ammonia emissions from organic mixed crop-dairy systems: a critical review of mitigation options. Agron Sustain Dev 30:215–236

    Article  CAS  Google Scholar 

  108. Petersen SO (1999) Nitrous oxide emissions from manure and inorganic fertilizers applied to spring barley. J Environ Qual 28:1610–1618

    Article  CAS  Google Scholar 

  109. Petersen SO, Ambus P (2006) Methane oxidation in pig and cattle slurry storages, and effect of surface crust moisture and methane availability. Nutr Cycl Agroecosyst 74:1–11

    Article  Google Scholar 

  110. Petersen SO, Andersen AJ, Eriksen J (2012) Effects of cattle slurry acidification on ammonia and methane evolution during storage. J Environ Qual 41:88–94

    Article  PubMed  CAS  Google Scholar 

  111. Petersen SO, Sommer SG (2011) Ammonia amd nitrous oxide interactions: roles of manure organic matter management. Anim Feed Sci Tech 166–167:503–513

    Article  CAS  Google Scholar 

  112. Plöchl M, Heiermann M (2002) Ökologische bewertung der bereitstellung landwirtschaftlicher kosubstrate zur biogaserzeugung. Bornimer Agrartechnische Ber 32:98–106, http://www.b3-bornim.de/doc/15_PLOECHL_2.pdf. Accessed 16 Mar 2012

    Google Scholar 

  113. Plöchl M, Heiermann M (2006) Biogas farming in Central and Northern Europe: a strategy for developing countries? Agricultural Engineering International: the CIGR Ejournal. Invited overview no. 8, vol VIII

  114. Plöchl M, Heiermann M, Linke B, Schelle H (2009) Biogas crops—Part II: balance of greenhouse gas emissions and energy from using field crops for anaerobic digestion. Agricultural Engineering International: the CIGR Ejournal. Manuscript number 1086, vol 11, 2009

  115. Pöschl M, Ward S, Owende P (2010) Evaluation of energy efficiency of various biogas production and utilization pathways. Appl Energ 87:3305–3321

    Article  CAS  Google Scholar 

  116. Pötsch E (2005) Abschlussbericht zum Forschungsprojekt BAL 2941. Nährstoffgehalt von Gärrückständen aus landwirtschaftlichen Biogasanlagen und deren Einsatz im Dauergrünland. http://www.raumberg-gumpenstein.at/c/index.php?option=com_fodok&Itemid=100033&task=detail&filter_publnr[]=639. Accessed 30 Oct 2011

  117. Quakernack R, Pacholski A, Techow A, Herrmann A, Taube F, Kage H (2012) Ammonia volatilization and yield response of energy crops after fertilization with biogas residues in a coastal marsh of Northern Germany. Agric Ecosyst Environ. doi:10.1016/j.agee.2011.05.030

  118. Reinhardt G, Köppen S (2010) Nachhaltige Produktion und Nutzung von Biogas: Quo vadis? (Sustainable production and use of biogas: quo vadis ?). In: Conf. Proceed. 19. Jahrestagung Fachverband Biogas e.V., Biogas—die Energie künftiger Generationen’, 2–4 Feb 2010, Leipzig, Germany, pp 41–48

  119. Roth U, Döhler H, Hartmann S, Wulf S (2011) Treibhausgasbilanzen und CO2eq-Vermeidungskosten landwirtschaftlicher Biogasanlagen. In: KTBL (ed) Biogas in der Landwirtschaft—Stand und Perspektiven. KTBL-Schrift 488, pp 196–208

  120. Rotz CA, Taube F, Russelle MP, Oenema J, Sanderson MA, Wachendorf M (2005) Whole-farm perspectives of nutrient flows in grassland agriculture. Crop Sci 45:2139–2159

    Article  CAS  Google Scholar 

  121. Rubaek H, Henriksen K, Petersen J, Rasmussen B, Sommer SG (1996) Effects of application technique and anaerobic digestion on gaseous nitrogen loss from animal slurry applied to ryegrass (Lolium perenne). J Agric Sci 126:481–492

    Article  Google Scholar 

  122. Sächsische Landesanstalt (1999) Umweltwirkung von Biogasgülle. Abschlußbericht zum Forschungsprojekt, Dresden. http://www.smul.sachsen.de/lfl/publikationen/download/1402_1.pdf. Accessed 16 Mar 2012

  123. Samson R, Lem CH, Bailey Stamler S, Dooper J (2008) Developing energy crops for thermal applications. Optimizing fuel quality, energy security and GHG mitigation. In: Pimentel D (ed) Biofuels, solar and wind as renewable energy systems. Springer, Dordrecht, pp 395–423

    Chapter  Google Scholar 

  124. Sänger A, Geisseler D, Ludwig B (2010) Effects of rainfall pattern on carbon and nitrogen dynamics in soil amended with biogas slurry and composted cattle manure. J Plant Nutr Soil Sci 173:692–698

    Article  CAS  Google Scholar 

  125. Sänger A, Geisseler D, Ludwig B (2011) Effects of moisture and temperature on greenhouse gas emissions and C and N leaching losses in soil treated with biogas slurry. Biol Fertil Soils 47:249–259

    Article  CAS  Google Scholar 

  126. Schaufeler G, Kitzler B, Schindlbacher A, Skiba U, Sutton MA, Zechmeister-Boltenstern S (2010) Greenhouse gas emissions from European soils under different land use: effects of soil moisture and temperature. Eur J Soil Sci 61:683–696

    Article  CAS  Google Scholar 

  127. Schievano A, D’Imporzano G, Salati S, Adani F (2011) On-field study of anaerobic digestion full-scale plants (Part I): an on-field methodology to determine mass, carbon and nutrients balance. Biores Technol 102:7737–7744

    Article  CAS  Google Scholar 

  128. Schrier-Uijl AP, Kroon PS, Leffelaar PA, van Huissteden JC, Berendse F, Veenendaal EM (2010) Methane emissions in two drained peat agro-ecosystems with high and low agricultural intensity. Plant Soil 329:509–520

    Article  CAS  Google Scholar 

  129. Schröder JJ, Uenk D, Hilhorst GJ (2007) Long-term nitrogen fertilizer replacement value of cattle manures applied to cut grassland. Plant Soil 299:83–99

    Article  CAS  Google Scholar 

  130. Schröder JJ, Van Dijk W, De Groot WJM (1996) Effects of cover crops on the nitrogen fluxes in a silage maize production system. Neth J Agric Sci 44:293–315

    Google Scholar 

  131. Schumacher B, Oechsner H, Senn T, Jungbluth T (2010) Life cycle assessment of the conversion of Zea mays and x Triticosecale into biogas and bioethanol. Eng Life Sci 10:577–584

    Article  CAS  Google Scholar 

  132. Senbayram M, Chen RR, Mühling KH, Dittert K (2009) Contribution of nitrification and denitrification to nitrous oxide emissions from soils amended with biogas waste compared to other fertilizers. Rapid Commun Mass Spectrom 23:2489–2498

    Article  PubMed  CAS  Google Scholar 

  133. Sensel K, Nielsen K, Wragge V (2011) Humusreproduktion von Gärprodukten aus Biogasanlagen. In: KTBL (ed) Biogas in der Landwirtschaft—Stand und Perspektiven. KTBL-Schrift 488, pp 382–383

  134. Skiba U, Ball B (2002) The effect of soil texture and soil drainage on emissions of nitric oxide and nitrous oxide. Soil Use Manage 18:56–60

    Article  Google Scholar 

  135. Smith K, Cumby T, Lapworth J, Misselbrook T, Williams A (2007) Natural crusting of slurry storage as an abatement measure for ammonia emissions on dairy farms. Biosystems Eng 97:464–471

    Article  Google Scholar 

  136. Smith KA, Metcalfe P, Grylls J, Jeffrey W, Sinclair A (2007a) Nutrient value of digestate from farm-based biogas plants in Scotland. Report for Scottish Executive Environment and Rural Affairs Department—ADA/009/06. http://www.scotland.gov.uk/Resource/Doc/1057/0053041.pdf. Accessed 16 Mar 2012

  137. Sommer SG, Husted S (1995) A simple model of pH in slurry. J Agric Sci 124:447–453

    Article  Google Scholar 

  138. Sommer SG, Husted S (1995) The chemical buffer system in raw and digested animal slurry. J Agric Sci 124:45–53

    Article  CAS  Google Scholar 

  139. Sommer SG, Petersen SO, Sogaard HAT (2000) Greenhouse gas emission from stored livestock slurry. J Environ Qual 29:744–751

    Article  CAS  Google Scholar 

  140. Sorensen P, Moller HB (2009) Fate of nitrogen in pig and cattle slurries applied to the soil–crop system. In: Adani F, Schievano A, Boccasile G (eds) Anaerobic digestion: opportunities for agriculture and environment. DiProVe University of Milan, Milan, pp 27–37

    Google Scholar 

  141. Starke P, Hoffmann C (2011) Sugarbeet as a substrate for biogas production. Zuckerindustrie 136:242–250 (in German with English abstract)

    CAS  Google Scholar 

  142. Svoboda N (2011) Auswirkung der Gärrestapplikation auf das Stickstoff-Auswaschungspotential von Anbausystemen zur Substratproduktion. Doctoral thesis, Christian-Albrechts-Universität, Kiel, Germany

  143. Tambone F, Genevini P, D’Imporzano G, Adani F (2009) Assessing amendment properties of digestate by studying the organic matter composition and the degree of biological stability during the anaerobic digestion of the organic fraction of MSW. Biores Technol 100:3140–3142

    Article  CAS  Google Scholar 

  144. Techow A, Dittert K, Senbayram M, Quakernack R, Pacholski A, Kage H et al (2010) Biogas Expert: Nitrous oxide emission from biogas production systems on a coastal marsh soil. In: Proceedings CD of ‘RAMIRAN 2010: treatment and use of organic residues in agriculture’, Lisbon, Portugal, 13–15 September 2010, ISBN: 978-972-8669-47-8

  145. Thorup-Kristensen K, Nielsen NE (1998) Modelling and measuring the effect of nitrogen catch crops on the nitrogen supply for succeeding crops. Plant Soil 203:79–89

    Article  CAS  Google Scholar 

  146. Trott H, Wachendorf M, Ingwersen B, Taube F (2004) Performance and environmental effects of forage production on sandy soils. I. Impact of defoliation system and nitrogen input on performance and N balance of grassland. Grass Forage Sci 59:41–55

    Article  Google Scholar 

  147. Ullendahl H, Wang G, Moller HB, Jorgensen U, Skiadas IV, Gavala HN et al (2008) Energy balance and cost–benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation. Water Sci Technol 58:1841–1847

    Article  CAS  Google Scholar 

  148. Van Beek CL, Pleijter M, Kuikman PJ (2011) Nitrous oxide emissions from fertilized and unfertilized grasslands on peat soil. Nutr Cycl Agroecosyst 89:453–461

    Article  CAS  Google Scholar 

  149. VDLUFA-Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (2004) Standpunkt Humusbilanzierung. http://www.vdlufa.de/joomla/Dokumente/Standpunkte/08-humusbilanzierung.pdf. Accessed 16 Mar 2012

  150. Velthof GL, Kuikman PJ, Oenema O (2003) Nitrous oxide emissions from animal manures applied to soil under controlled conditions. Biol Fertil Soils 37:221–230

    CAS  Google Scholar 

  151. Vèrtes F, Mary B (2007) Modelling the long term SOM dynamics in fodder rotations with a variable part of grassland. In: Chabbi A (ed) Organic Matter Symposium, Poitiers, France, 17–19 July 2007, pp 549–550

  152. Vertès F, Menasseri S, Morvan T (2005) Grass period long term effect on soil organic matter in ley-arable rotations. Meeting of the EGF working group ‘Dairy Farming Systems and Environment’, Maastricht, The Netherlands, 23 Oct 2005

  153. Vetter A (2009) Anbausysteme für energiepflanzen. In: Vetter A, Heiermann M, Toews T (eds) Anbausysteme für energiepflanzen. DLG-Verlags-GmbH, Frankfurt

    Google Scholar 

  154. Vetter A, Arnold K (2010) Klima- und Umwelteffekte von Biomethan: Anlagentechnik und Substratauswahl. Wuppertal papers 182. http://www.wupperinst.org/uploads/tx_wibeitrag/WP182.pdf. Accessed 16 Mar 2012

  155. Volkers K (2004) Auswirkungen einer variierten Stickstoff-Intensität auf Leistung und Stickstoffbilanz von Silomais in Monokultur sowie einer Ackerfutterbau-Fruchtfolge auf sandigen Böden Norddeutschlands. Doctoral thesis, Christian-Albrechts-Universität, Kiel, Germany

  156. Wachendorf M, Volkers KC, Loges R, Rave G, Taube F (2006) Performance and environmental effects of forage production on sandy soils. IV. Impact of slurry application, mineral N fertilizer and grass understorey on yield and nitrogen surplus of maize for silage. Grass Forage Sci 61:232–242

    Article  Google Scholar 

  157. Wahal S, Viamajala S, Hansen CL (2010) Chemical speciation in the effluent of an anaerobic digester treating dairy waste: implications for nutrient recovery and reuse. Trans ASABE 53:1727–1732

    CAS  Google Scholar 

  158. Weiland P (2010) Flaschenhals Gärrestverwertung. In: Universität für Bodenkultur (ed) Symposium ‚Aufbereitung von Gärresten’ und Vorstellung der Studie‚ AD+plus’, 30 Sept 2010. Tulln, Austria, pp 1–12. http://literatur.vti.bund.de/digbib_extern/dn047034.pdf. Accessed 16 Mar 2012

  159. Weissbach F, Engler N, Wesseling S (2011) Substratausnutzung in Biogasanlagen mit und ohne gasdichtem Gärrestbehälter. In: KTBL (ed) Biogas in der Landwirtschaft—Stand und Perspektiven. KTBL-Schrift 488, pp 365–368

  160. Wulf S, Maeting M, Clemens J (2002) Application technique and slurry co-fermentation effects on ammonia, nitrous oxide, and methane emissions after spreading: I. Ammonia volatilization. J Environ Qual 31:1789–1794

    Article  PubMed  CAS  Google Scholar 

  161. Wulf S, Maeting M, Clemens J (2002) Application technique and slurry co-fermentation effects on ammonia, nitrous oxide, and methane emissions after spreading: II. Greenhause gas emissions. J Environ Qual 31:1795–1801

    Article  PubMed  CAS  Google Scholar 

  162. Zah R, Böni H, Gauch M, Hischier R, Lehmann M, Wäger P (2007) Ökobilanz von Energieprodukten: Ökologische Bewertung von Biotreibstoffen. Empa, St. Gallen, Switzerland. http://www.news.admin.ch/NSBSubscriber/message/attachments/8514.pdf. Accessed 16 Mar 2012

Download references

Acknowledgements

The author would like to thank F. Taube for his contribution to the improvement of an earlier version of this paper. Thanks are also expressed to A. Hopkins for linguistic editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Herrmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmann, A. Biogas Production from Maize: Current State, Challenges and Prospects. 2. Agronomic and Environmental Aspects. Bioenerg. Res. 6, 372–387 (2013). https://doi.org/10.1007/s12155-012-9227-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-012-9227-x

Keywords

Navigation