Skip to main content
Log in

Interaction of fermionic matter and ECSK black hole leading to bouncing universe

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The interactions between spin of fermionic matter and torsion in Einstein–Cartan–Sciama–Kibble (ECSK) theory of gravity provide a repulsive gravitational potential at very dense states of fermionic matter, which prevents the formation of black hole singularities inside the deeper horizon. While the fermionic matter in the black hole is attracted by the black hole at the beginning, after a critical point it is repelled to bounce at a critical high density and then expand into other side of the horizon as a newly created space, which may be considered as a non-singular, closed universe. We constructed the action of these fermions in a black hole with torsion in the framework of ECSK theory of gravity from which the free Dirac action is inferred and the interaction potential is obtained. Also, this scenario naturally solves the flatness and horizon problems of cosmology without introducing finely tuned scalar fields, or more complicated functions of the Ricci scalar R in gravitational action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. E A Lord, Tensors, Relativity and Cosmology (New York: McGraw-Hill) (1976)

    Google Scholar 

  2. T W B Kibble J. Math. Phys. 2 212 (1961)

    Article  ADS  Google Scholar 

  3. D W Sciama Rev. Mod. Phys. 36 463 (1964)

    Article  ADS  Google Scholar 

  4. D W Sciama Rev. Mod. Phys. 36 1103 (1964)

    Article  ADS  Google Scholar 

  5. F W Hehl Phys. Lett. A 36 225 (1971)

    Article  ADS  Google Scholar 

  6. F W Hehl Gen. Relativ. Gravit. 4 333 (1973)

    Article  ADS  Google Scholar 

  7. F W Hehl Gen. Relativ. Gravit. 5 491 (1974)

    Article  ADS  Google Scholar 

  8. F W Hehl, P von der Heyde and G D Kerlick, J M Nester Rev. Mod. Phys. 48 393 (1976)

    Article  ADS  Google Scholar 

  9. F W Hehl and B K Datta J. Math. Phys. 12 1334 (1971)

    Article  ADS  Google Scholar 

  10. V de Sabbata and M Gasperini Introduction to Gravitation (Singapore: World Scientific) (1985)

  11. V de Sabbata and C Sivaram Spin and Torsion in Gravitation (Singapore: World Scientific) (1994)

  12. J A Schouten Ricci-Calculus (Berlin: Springer-Verlag) (1954)

  13. I L Shapiro Phys. Rep. 357 113 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  14. R T Hammond Rep. Prog. Phys. 65 599 (2002)

    Article  ADS  Google Scholar 

  15. T P Sotiriou and V Faraoni Rev. Mod. Phys. 82 451 (2010)

    Article  ADS  Google Scholar 

  16. S Capozziello and M de Laurentis Phys. Rept. 509 167 (2011)

    Article  ADS  Google Scholar 

  17. N J Poplawski ApJ 832 96 (2016)

    Article  ADS  Google Scholar 

  18. N Poplawski arXiv:1304.0047 (2013)

  19. N J Poplawski arXiv:0911.0334 (2009)

  20. W Kopczyński Phys. Lett. A 39 219 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  21. W Kopczyński Phys. Lett. A 43 63 (1973)

    Article  ADS  Google Scholar 

  22. A Trautman Nature Physical Science 242 7 (1973)

    Article  ADS  Google Scholar 

  23. F W Hehl Gen. Relativ. Gravit. 5 491 (1974)

    Article  ADS  Google Scholar 

  24. M Gasperini Phys. Rev. Lett. 56 2873 (1986)

    Article  ADS  Google Scholar 

  25. S D Brechet, M P Hobson and A N Lasenby CQGra 25 245016 (2008)

    Article  ADS  Google Scholar 

  26. N J Poplawski Phys. Lett. B 687 110 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  27. N Poplawski Phys. Rev. D 85 107502 (2012)

    Article  ADS  Google Scholar 

  28. N J Poplawski Phys. Lett. B 727 575 (2013)

    Article  ADS  Google Scholar 

  29. J Magueijo, T G Zlosnik and T W B Kibble Phys. Rev. D 87 063504 (2013)

    Article  ADS  Google Scholar 

  30. S Alexander, C Bambi, A Marcianò and L Modesto Phys. Rev. D 90 123510 (2014)

    Article  ADS  Google Scholar 

  31. C Bambi, D Malafarina, A Marcianò and L Modesto Phys. Lett. B 734 27 (2014)

    Article  ADS  Google Scholar 

  32. B Kuchowicz Gen. Rel. Grav. 9 511 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  33. L C Garcia de Andrade NCimB 116 1107 (2001)

    ADS  Google Scholar 

  34. N J Popławski Phys. Lett. B 694 181 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  35. N J Popławski Phys. Lett. B 701 672 (2011)

    Article  ADS  Google Scholar 

  36. N J Popławski Gen. Relativ. Gravit. 44 1007 (2012)

    Article  ADS  Google Scholar 

  37. N Popławski Astron. Rev. 8 108 (2013b)

    ADS  Google Scholar 

  38. D Kazanas ApJL 241 L59 (1980)

    Article  ADS  Google Scholar 

  39. A H Guth Phys. Rev. D 23 347 (1981)

    Article  ADS  Google Scholar 

  40. A Linde Phys. Lett. B 108 389 (1982)

    Article  ADS  Google Scholar 

  41. N. J. Poplawski, Phys. Lett. B 690 73 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  42. T Stachowiak and M Szydłowski Phys. Lett. B 646 209 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  43. M Novello and S E Perez Bergliaffa Phys. Rev. 463 127 (2008)

    Google Scholar 

  44. D Battefeld and P Peter Phys. Rev. 571 1 (2015)

    Google Scholar 

  45. R Brandenberger and P Peter arXiv:1603.05834 (2016)

  46. I D Novikov JETPL 3 142 (1966)

    ADS  Google Scholar 

  47. R K Pathria Nature 240 298 (1972)

    Article  ADS  Google Scholar 

  48. V P Frolov, M A Markov and V F Mukhanov Phys. Lett. B 216 272 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  49. V P Frolov, M A Markov and V F Mukhanov Phys. Rev. D 41 383 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  50. L Smolin Class. Quantum Grav. 9 173 (1992)

    Article  ADS  Google Scholar 

  51. W M Stuckey American J. Phys. 62 788 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  52. D A Easson and R H Brandenberger JHEP 06 024 (2001)

    Article  ADS  Google Scholar 

  53. J Smoller and B Temple PNAS 100 11216 (2003)

    Article  ADS  Google Scholar 

  54. M. Forger and H. Römer, Annals of Physics 309 306 (2004)

    Article  ADS  Google Scholar 

  55. Y N Obukhov, V N Ponomarev and V V Zhytnikov, Gen. Rel. Grav. 21 1107 (1989)

    Article  ADS  Google Scholar 

  56. Y N Obukhov Int. J. Geom. Meth. Mod. Phys. 3 95 (2006)

    Article  MathSciNet  Google Scholar 

  57. S M Christensen, J. Phys. A: Math. Gen. 13 3001 (1980)

    Article  ADS  Google Scholar 

  58. H Shabani and A HadiZiaie Int. J. Mod Phys. A 33 1850095 (2018)

  59. L Zhang, S Chen and J Jing Int. J. Mod Phys. D 27 1850110 (2018)

  60. S Chen, L Zhang and J Jing Eur. Phys. J. C 78 981 (2018)

  61. A Ovgun and İ Sakalli Class. Quantum Grav. 37 225003 (2020)

    Article  ADS  Google Scholar 

  62. L Parker Phys. Rev. D 3 346 (1971)

    Article  ADS  Google Scholar 

  63. L Parker Phys. Rev. D 3 2546 (1971)

    Article  ADS  Google Scholar 

  64. Y B Zel’dovich JETPL 12 307 (1970)

    ADS  Google Scholar 

  65. Y B Zel’dovich and A A Starobinskii JETPL 26 252 (1977)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Dil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dil, E. Interaction of fermionic matter and ECSK black hole leading to bouncing universe. Indian J Phys 96, 3031–3037 (2022). https://doi.org/10.1007/s12648-021-02200-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02200-3

Keywords

Navigation