Skip to main content
Log in

Big bounce from spin and torsion

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The Einstein-Cartan-Sciama-Kibble theory of gravity naturally extends general relativity to account for the intrinsic spin of matter. Spacetime torsion, generated by spin of Dirac fields, induces gravitational repulsion in fermionic matter at extremely high densities and prevents the formation of singularities. Accordingly, the big bang is replaced by a bounce that occurred when the energy density \({\epsilon \propto gT^4}\) was on the order of \({n^2/m_{\rm Pl}^2}\) (in natural units), where \({n \propto gT^3}\) is the fermion number density and g is the number of thermal degrees of freedom. If the early Universe contained only the known standard-model particles (g ≈ 100), then the energy density at the big bounce was about 15 times larger than the Planck energy. The minimum scale factor of the Universe (at the bounce) was about 1032 times smaller than its present value, giving ≈ 50 μm. If more fermions existed in the early Universe, then the spin-torsion coupling causes a bounce at a lower energy and larger scale factor. Recent observations of high-energy photons from gamma-ray bursts indicate that spacetime may behave classically even at scales below the Planck length, supporting the classical spin-torsion mechanism of the big bounce. Such a classical bounce prevents the matter in the contracting Universe from reaching the conditions at which a quantum bounce could possibly occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kibble T.W.B.: J. Math. Phys. (N.Y.) 2, 212 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Sciama, D.W.: In: Recent Developments in General Relativity, p. 415. Pergamon, New York (1962)

  3. Sciama D.W.: Rev. Mod. Phys. 36, 463 (1964)

    Article  ADS  Google Scholar 

  4. Sciama D.W.: Rev. Mod. Phys. 36, 1103(E) (1964)

    ADS  Google Scholar 

  5. Hehl F.W.: Phys. Lett. A 36, 225 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  6. Hehl F.W.: Gen. Relativ. Gravit. 4, 333 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  7. Hehl F.W.: Gen. Relativ. Gravit. 5, 491 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  8. Trautman A.: Ann. N.Y. Acad. Sci. 262, 241 (1975)

    Article  ADS  Google Scholar 

  9. de Sabbata V., Sivaram C.: Spin and Torsion in Gravitation. World Scientific, Singapore (1994)

    Book  MATH  Google Scholar 

  10. Popławski, N.J.: arXiv:0911.0334

  11. Hehl F.W., von der Heyde P., Kerlick G.D., Nester J.M.: Rev. Mod. Phys. 48, 393 (1976)

    Article  ADS  Google Scholar 

  12. Lord E.A.: Tensors, Relativity and Cosmology. McGraw-Hill, New Delhi (1976)

    Google Scholar 

  13. Landau L.D., Lifshitz E.M.: The Classical Theory of Fields. Pergamon, New York (1975)

    Google Scholar 

  14. Weyssenhoff J., Raabe A.: Acta Phys. Pol. 9, 7 (1947)

    MathSciNet  Google Scholar 

  15. Obukhov Y.N., Korotky V.A.: Class Quantum Gravit. 4, 1633 (1987)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Hehl F.W., von der Heyde P., Kerlick G.D.: Phys. Rev. D 10, 1066 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  17. Nomura K., Shirafuji T., Hayashi K.: Prog. Theor. Phys. 86, 1239 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  18. Kuchowicz B.: Gen. Relativ. Gravit. 9, 511 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  19. Kopczyński W.: Phys. Lett. A 39, 219 (1972)

    Article  ADS  Google Scholar 

  20. Kopczyński W.: Phys. Lett. A 43, 63 (1973)

    Article  ADS  Google Scholar 

  21. Trautman A.: Nature (Phys. Sci.) 242, 7 (1973)

    ADS  Google Scholar 

  22. Tafel J.: Phys. Lett. A 45, 341 (1973)

    Article  ADS  Google Scholar 

  23. Gasperini M.: Phys. Rev. Lett. 56, 2873 (1986)

    Article  ADS  Google Scholar 

  24. Popławski N.J.: Phys. Lett. B 694, 181 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  25. Popławski N.J.: Phys. Lett. B 701, 672(E) (2011)

    ADS  Google Scholar 

  26. Parker L., Fulling S.A.: Phys. Rev. D 7, 2357 (1973)

    Article  ADS  Google Scholar 

  27. Melnikov V.N., Orlov S.V.: Phys. Lett. A 70, 263 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  28. de Barros J.A., Pinto-Neto N., Sagioro-Leal M.A.: Phys. Lett. A 241, 229 (1998)

    Article  ADS  Google Scholar 

  29. Peter P., Pinho E.J.C., Pinto-Neto N.: Phys. Rev. D 75, 023516 (2007)

    Article  ADS  Google Scholar 

  30. Novello M., Perez Bergliaffa S.E.: Phys. Rept. 463, 127 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  31. Brechet S.D., Hobson M.P., Lasenby A.N.: Class Quantum Gravit. 25, 245016 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  32. Bañados M., Ferreira P.G.: Phys. Rev. Lett. 105, 011101 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  33. Brandenberger, R.H.: arXiv:1103.2271

  34. Cai, Y.-F., Chen, S.-H., Dent, J.B., Dutta, S., Saridakis, E.N.: 1104.4349

  35. Pathria R.K.: Nature 240, 298 (1972)

    Article  ADS  Google Scholar 

  36. Frolov V.P., Markov M.A., Mukhanov V.F.: Phys. Lett. B 216, 272 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  37. Frolov V.P., Markov M.A., Mukhanov V.F.: Phys. Rev. D 41, 383 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  38. Smolin L.: Class Quantum Gravit. 9, 173 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  39. Stuckey W.M.: Am. J. Phys. 62, 788 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Easson D.A., Brandenberger R.H.: J. High Energy Phys. 0106, 024 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  41. Smoller J., Temple B.: Proc. Natl. Acad. Sci. USA 100, 11216 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Popławski N.J.: Phys. Lett. B 687, 110 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  43. Popławski, N.J.: arXiv:1103.4192

  44. Peter P., Pinto-Neto N.: Phys. Rev. D 78, 063506 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  45. Kashlinsky A., Atrio-Barandela F., Ebeling H., Edge A., Kocevski D.: Astrophys. J. Lett. 712, L81 (2010)

    Article  ADS  Google Scholar 

  46. Bojowald M.: Phys. Rev. Lett. 86, 5227 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  47. Bojowald M.: Nature Phys. 3, 523 (2007)

    Article  ADS  Google Scholar 

  48. Ashtekar A., Sloan D.: Phys. Lett. B 694, 108 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  49. Nurgaliev I.S., Ponomariev W.N.: Phys. Lett. B 130, 378 (1983)

    Article  ADS  Google Scholar 

  50. Kolb E.W., Turner M.S.: The Early Universe. Addison-Wesley, New York (1990)

    MATH  Google Scholar 

  51. Rich J.: Fundamentals of Cosmology. Springer, Berlin (2001)

    MATH  Google Scholar 

  52. Pati J.C., Salam A.: Phys. Rev. D 10, 275 (1974)

    Article  ADS  Google Scholar 

  53. Terazawa H., Chikashige Y., Akama K.: Phys. Rev. D 15, 480 (1977)

    Article  ADS  Google Scholar 

  54. Ne’eman Y.: Phys. Lett. B 81, 190 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  55. Harari H.: Phys. Lett. B 86, 83 (1979)

    Article  ADS  Google Scholar 

  56. Shupe M.A.: Phys. Lett. B 86, 87 (1979)

    Article  ADS  Google Scholar 

  57. Fritzsch H., Mandelbaum G.: Phys. Lett. B 102, 319 (1981)

    Article  ADS  Google Scholar 

  58. Laurent P., Götz D., Binétruy P., Covino S., Fernandez-Soto A.: Phys. Rev. D 83, 121301(R) (2011)

    Article  ADS  Google Scholar 

  59. Stecker F.W.: Astropart. Phys. 35, 95 (2011)

    Article  ADS  Google Scholar 

  60. Nemiroff, R. J., Holmes, J., Connolly, R.: arXiv:1109.5191

  61. Larson, D. et al.: (WMAP collaboration). Astrophys. J. Suppl. 192, 16 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikodem J. Popławski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popławski, N.J. Big bounce from spin and torsion. Gen Relativ Gravit 44, 1007–1014 (2012). https://doi.org/10.1007/s10714-011-1323-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-011-1323-2

Keywords

Navigation