Skip to main content
Log in

Importance of heat generation in chemically reactive flow subjected to convectively heated surface

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Our main emphasis here is to scrutinize the Lorentz’s force aspects on the flow of cross-fluid in cylindrical surface. More specifically, heat transfer features are examined subject to heat sink–source and radiative flux. Furthermore, aspects of quartic autocatalysis analysis are considered. Non-dimensional variables are introducing to develop the physical model. The physical problem by employing Bvp4c scheme. Influences of rheological parameters for concentration, temperature and velocity are discussed. Additionally, computational analysis for Nusselt number and skin friction coefficient is presented through tables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(u,v\) :

Velocity components

\(x\) :

Distance along the axial direction

\(r\) :

Distance along the radial direction

\(\eta\) :

Local similarity variable

\(b\left( t \right)\) :

Radial of cylinder

\(B\left( t \right)\) :

Strength of magnetic field

\(c,b_{0}\) :

Positive constants

\(\nu\) :

Kinematics viscosity

\(T_{\infty }\) :

Ambient fluid temperature

\(\varGamma\) :

Time material constant

\(T_{\text{w}}\) :

Surface temperature

\(\rho_{\text{f}}\) :

Fluid density

\(\lambda_{1} > 0\) :

Stretching cylinder

\(\lambda_{1} < 0\) :

Shrinking cylinder

\(n\) :

Power law index

\(T\) :

Fluid temperature

t :

Time

\(\sigma^{*}\) :

Stefan–Boltzmann

\(\alpha_{\text{m}}\) :

Thermal diffusivity

\(D_{\text{A}} ,D_{\text{B}}\) :

Diffusion coefficient

\(\left( {\rho c} \right)_{\text{f}}\) :

Heat capacity of fluid

\(\rho_{\text{f}}\) :

Fluid density

\(Q_{0}\) :

Heat generation/absorption parameter

\(U_{\text{w}} \left( {x,t} \right)\) :

Stretching velocity

\(U_{\text{e}} \left( {x,t} \right)\) :

Free stream velocity

B 0 :

Magnetic field strength

S :

Velocity ratio parameter

λ 1 :

Velocity ratio parameter

We:

Local Weissenberg number

A :

Unsteadiness parameter

Λ :

Heat source–sink parameter

\(\theta_{\text{w}}\) :

Temperature ratio parameter

\(N_{\text{R}}\) :

Radiation parameter

Pr:

Prandtl number

S:

Dimensionless suction parameter

\(K_{\text{s}}\) :

Heterogeneous strength of reaction parameter

K :

Strength coefficient of homogenous reaction

\(\gamma\) :

Thermal Biot number

M :

Magnetic parameter

Sc:

Schmidt number

\(f\) :

Dimensionless velocities

\(\theta\) :

Dimensionless temperature

\(\phi\) :

Dimensionless concentration

Re:

Local Reynolds number

\(C_{\text{f}}\) :

Skin friction

\({\text{Nu}}_{x}\) :

Local Nusselt number

References

  1. W A Khan, M Khan and R Malik PLoS ONE 9(8) e105107 (2014)

    Article  ADS  Google Scholar 

  2. M Khan, W A Khan and A S Alshomrani Int. J. Heat Mass Transf. 101 570 (2016)

    Article  Google Scholar 

  3. T Hayat, M I Khan, M Tamoor, M Waqas and A Alsaedi Results Phys. 7 1824 (2017)

    Article  ADS  Google Scholar 

  4. M Khan, M Manzur and M Rahman Results Phys. 7 3767 (2017)

    Article  ADS  Google Scholar 

  5. W A Khan, I Haq, M Ali, M Shahzad, M Khan and M Irfan J. Braz Soc. Mech. Sci. Eng. 40 470 (2018)

    Article  Google Scholar 

  6. M Manzur, M Khan and M ur Rahman Int. J. Mech. Sci. 138-139 515 (2018)

    Article  Google Scholar 

  7. F Sultan, W A Khan, M Ali, M Shahzad, M Irfan and M Khan PramanaJ. Phys. 92 21 (2019)

    Article  ADS  Google Scholar 

  8. M Sheikholeslami and M K Sadoughi Int. J. Heat Mass Transf. 116 909 (2018)

    Article  Google Scholar 

  9. W A Khan, A S Alshomrani, A K Alzahrani, M Khan and M Irfan PramanaJ. Phys. 91 63 (2018)

    Article  ADS  Google Scholar 

  10. M Sheikholeslami and M Seyednezhad Int. J. Heat Mass Transf. 120 772 (2018)

    Article  Google Scholar 

  11. M Sheikholeslami and H B Rokni Int. J. Heat Mass Transf. 118 823 2018

    Article  Google Scholar 

  12. A S Alshomrani, M Zaka Ullah, S S Capizzano, W A Khan and M Khan Arab. J. Sci. Eng. 44 (1) 579 (2019)

    Article  Google Scholar 

  13. M Sheikholeslami, M Jafaryar, A Shafee, Z Li and R Haq Int. J. Heat Mass Transf. 136 1233 (2019)

    Article  Google Scholar 

  14. M Shruthy and B Mahanthesh J. Nanofluids 8 (1) 222 (2019)

    Article  Google Scholar 

  15. M Sheikholeslami, R Haq, A Shafee, Z Lie, Y G Elaraki and I Tlili Int. J. Heat Mass Transf. 135 470 (2019)

    Article  Google Scholar 

  16. B J Gireesha, M Archana, B Mahanthesh and B C Prasannakumara Mult. Mod. Mater. Struct., 15 (1) 227 (2019)

    Article  Google Scholar 

  17. M Irfan, W A Khan, M Khan and M M Gulzar J. Phys. Chem. Solids 125 141 2019

    Article  ADS  Google Scholar 

  18. M Sheikholeslami, R Haq, A Shafee and Z Li Int. J. Heat Mass Transf. 130 1322 (2019)

    Article  Google Scholar 

  19. M Khan, M Irfan, W A Khan and M Sajid J. Braz. Soc. Mech. Sci. Eng. 41 116 (2019)

    Article  Google Scholar 

  20. I L Animasaun, O K Koriko, K S Adegbie, H A Babatunde, R O Ibraheem, N Sandeep and B Mahanthesh J. Therm. Anal. Calorim. 135 (2) 873 (2019)

    Article  Google Scholar 

  21. M Sheikholeslami Comput. Methods Appl. Mech. Eng. 344 319 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  22. S Z Abbas, W A Khan, H Sun, M Ali, M Irfan, M Shahzed and F Sultan Appl. Nanosci. (2019) https://doi.org/10.1007/s13204-019-01039-9

    Article  Google Scholar 

  23. M Sheikholeslami Comput. Methods Appl. Mech. Eng. 344 306 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  24. M Ali, W A Khan, M Irfan, F Sultan, M Shahzed and M Khan Appl. Nanosci. (2019) https://doi.org/10.1007/s13204-019-01038-w

    Article  Google Scholar 

  25. M Sheikholeslami, M B Gerdroodbary, R Moradi, A Shafee and Z Li Comput. Methods Appl. Mech. Eng. 344 1 (2019)

    Article  ADS  Google Scholar 

  26. M Sheikholeslami and Omid Mahian J. Clean. Prod. 215 963 (2019)

    Article  Google Scholar 

  27. M Khan, M Irfan, W A Khan Pramana-J. Phys. 92 17 (2019) https://doi.org/10.1007/s12043-018-1690-2

    Article  ADS  Google Scholar 

  28. A Nematpour Keshteli and M Sheikholeslami J. Mol. Liq., 274 516 (2019)

    Article  Google Scholar 

  29. W A Khan, M Irfan, M Khan, A S Alshomrani, A K Alzahrani and M S Alghamdi J. Mol. Liq. 234 201 (2017)

    Article  Google Scholar 

  30. M I Khan, M Waqas, T Hayat, M I Khan and A Alsaedi J. Mol. Liq. 246 259 (2017)

    Article  Google Scholar 

  31. M A Sadiq, M Waqas and T Hayat J. Mol. Liq. 248 1071 (2017)

    Article  Google Scholar 

  32. B Mahanthesh, B J Gireesha and P R Athira Results Phys. 7 2375 (2017)

    Article  ADS  Google Scholar 

  33. T Hayat, M W A Khan, M I Khan, M Waqas and A Alsaedi Phys. B. 538 138 (2018)

    Article  ADS  Google Scholar 

  34. M S Kumar, N Sandeep, B R Kumar and S Saleem Alexandria Eng. J. 57 2027 (2018)

    Article  Google Scholar 

  35. G K Ramesh, S A Shehzad, T Hayat and A Alsaedi J. Braz. Soc. Mech. Sci. Eng. 40 422 (2018)

    Article  Google Scholar 

  36. M I Khan, S Qayyum, T Hayat, M I Khan, A Alsaedi and T A Khan Phys. Lett. A. 382 2017 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  37. M Imtiaz, A Kiran, T Hayat and A Alsaedi J. Braz. Soc. Mech. Sci. Eng. 40 449 (2018)

    Article  Google Scholar 

  38. W A Khan, F Sultan, M Ali, M Shahzad, M Khan and M Irfan J. Braz. Soc. Mech. Sci. Eng. 4 41 (2019)

    Google Scholar 

Download references

Acknowledgements

This project was funded by the postdoctoral international exchange program for incoming postdoctoral students, at Beijing Institute of Technology, Beijing, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W A Khan.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, W.A., Sun, H., Shahzad, M. et al. Importance of heat generation in chemically reactive flow subjected to convectively heated surface. Indian J Phys 95, 89–97 (2021). https://doi.org/10.1007/s12648-019-01678-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01678-2

Keywords

PACS Nos.

Navigation