Skip to main content

Advertisement

Log in

Theoretical aspects of thermophoresis and Brownian motion for three-dimensional flow of the cross fluid with activation energy

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The current review proclaims the forced convective flow and heat–mass transfer characteristics of cross nanofluid past a bidirectional stretched surface. The most significant aim of the current review is to incorporate the features of Buongiorno relation, activation energy, nonlinear thermal radiation and heat sink–source for a three-dimensional flow of the cross fluid. Appropriate transformations are employed to transform the modelled partial differential equations (PDEs) of momentum, temperature and concentration into coupled nonlinear ordinary differential equations (ODEs). The governing boundary value problem is numerically integrated with the help of bvp4c scheme. The obtained numerical data are plotted for the temperature and concentration profiles of nanofluid for various converging values of physical parameters. The dependence of increasing thermophysical parameters on temperature and concentration profiles of the cross nanofluid is graphically demonstrated. Furthermore, detailed study reveals that the concentration of the cross nanofluid decreases for increasing values of Brownian motion parameter. It is also perceived from the sketches that the concentration of the cross nanofluid decreases for higher values of chemical reaction parameter. The validity of the achieved numerical outcomes is ensured by making a comparison with the existing work as special cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S U S Choi, ASME Int. Mech. Eng. 66, 99 (1995)

    Google Scholar 

  2. H F Oztop and E Abu-Nada, Int. J. Heat Fluid Flow 29, 1326 (2008)

    Article  Google Scholar 

  3. W A Khan, M Khan and R Malik, PLoS ONE 9(8), e10510 (2014)

    Google Scholar 

  4. M Sheikholeslami and R Ellahi, Int. J. Heat Mass Transfer 89, 799 (2015)

    Article  Google Scholar 

  5. N S Akbar, M Raza and R Ellahi, J. Magn. Magn. Mater. 381, 405 (2015)

    Article  ADS  Google Scholar 

  6. M Khan and W A Khan, AIP Adv. 5, 107138 (2015)

    Article  ADS  Google Scholar 

  7. N Sandeep, B R Kumar and M S J Kumar, J. Mol. Liq. 212, 585 (2015)

    Article  Google Scholar 

  8. S Rehman, Rizwan ul Haq, Z H Khan and C Lee, J. Taiwan Inst. Chem. Eng. 63, 226 (2016)

    Article  Google Scholar 

  9. M Khan, W A Khan and A S Alshomrani, Int. J. Heat Mass Transfer 101, 570 (2016)

    Article  Google Scholar 

  10. R ul Haq, Z H Khan, S T Hussain and Z Hammouch, J. Mol. Liq. 221, 298 (2016)

    Article  Google Scholar 

  11. M Khan and W A Khan, AIP Adv. 6, 025211 (2016)

    Article  ADS  Google Scholar 

  12. T Hayat, M Waqas, S A Shehzad and A Alsaedi, Pramana – J. Phys. 86, 3 (2016)

    Article  ADS  Google Scholar 

  13. M Khan and W A Khan, J. Braz. Soc. Mech. Sci. Eng. 38, 2359 (2016)

    Article  Google Scholar 

  14. S U Rahman, R Ellahi, S Nadeem and Q M Zaigham Zia, J. Mol. Liq. 218, 484 (2016)

    Article  Google Scholar 

  15. T Hayat, M Rashid, M Imtiaz and A Alsaedi, Int. J. Heat Mass Transfer 113, 96 (2017)

    Article  Google Scholar 

  16. M M Bhatti, A Zeeshan and R Ellahi, Pramana – J. Phys. 89: 48 (2017)

    Article  ADS  Google Scholar 

  17. K M Shirvan, R Ellahi, M Mamourian and M Moghiman, Int. J. Heat Mass Transfer 107, 1110 (2017)

    Article  Google Scholar 

  18. T Hayat, M Javed, M Imtiaz and A Alsaedi, Eur. Phys. J. Plus 132, 146 (2017)

    Article  Google Scholar 

  19. N Sandeep, Adv. Powder Technol. 28, 865 (2017)

    Article  Google Scholar 

  20. K M Shirvan, M Mamourian, S Mirzakhanlari and R Ellahi, Powder Technol. 313, 99 (2017)

    Article  Google Scholar 

  21. R Ellahi, M H Tariq, M Hassan and K Vafai, J. Mol. Liq. 229, 339 (2017)

    Article  Google Scholar 

  22. S Rashidi, J A Esfahani and R Ellahi, Appl. Sci. 7, 431 (2017)

    Article  Google Scholar 

  23. M Khan, M Iran and W A Khan, Int. J. Hydrog. Energy 42, 22054 (2017)

    Article  Google Scholar 

  24. M Khan, M Iran and W A Khan, Int. J. Mech. Sci. 130, 375 (2017)

    Article  Google Scholar 

  25. J A Esfahani, M Akbarzadeh, S Rashidi, M A Rosen and R Ellahi, Int. J. Heat Mass Transfer 109, 1162 (2017)

    Article  Google Scholar 

  26. M Hassan, A Zeeshan, A Majeed and R Ellahi, J. Magn. Magn. Mater. 443, 36 (2017)

    Article  ADS  Google Scholar 

  27. W A Khan, M Irfan, M Khan, A S Alshomrani, A K Alzahrani and M S Alghamdi, J. Mol. Liq. 234, 201 (2017)

    Article  Google Scholar 

  28. M Irfan, M Khan and W A Khan, Eur. Phys. J. Plus 132, 517 (2017)

    Article  Google Scholar 

  29. R Ellahi, Appl. Sci. 8, 192 (2018)

    Article  Google Scholar 

  30. S Rashidi, S Akar, M Bovand and R Ellahi, Renew. Energy 115, 400 (2018)

    Article  Google Scholar 

  31. A Zeeshan, N Shehzad and R Ellahi, Results Phys. 8, 502 (2018)

    Article  ADS  Google Scholar 

  32. N Ijaz, A Zeeshan, M M Bhatti and R Ellahi, J. Mol. Liq. 250, 80 (2018)

    Article  Google Scholar 

  33. M Khan, M Irfan and W A Khan, J. Braz. Soc. Mech. Sci. Eng. 40, 108 (2018)

    Article  Google Scholar 

  34. M Irfan, M Khan, W A Khan and M Ayaz, Phys. Lett A 382(30), 1992 (2018)

    Article  ADS  Google Scholar 

  35. M Ramzan, N Ullah, J D Chung, D Lu and U Farooq, Sci. Rep. 7, 12901 (2017)

    Article  ADS  Google Scholar 

  36. M Ramzan, M Bilal and J D Chung, PLoS ONE 12(1), e0170790 (2016)

    Article  Google Scholar 

  37. Z Shafique, M Mustafa and A Mushtaq, Results Phys. 6, 627 (2016)

    Article  ADS  Google Scholar 

  38. W A Khan, A S Alshomrani and M Khan, Results Phys. 6, 772 (2016)

    Article  ADS  Google Scholar 

  39. M Mustafa, J A Khan, T Hayat and A Alsaedi, Int. J. Heat Mass Transfer 108, 1340 (2017)

    Article  Google Scholar 

  40. J Harris, Rheology and non-Newtonian flow (Longman, London, 1977)

    MATH  Google Scholar 

  41. P D Ariel, Comput. Math. Appl. 54, 920 (2007)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Sultan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sultan, F., Khan, W.A., Ali, M. et al. Theoretical aspects of thermophoresis and Brownian motion for three-dimensional flow of the cross fluid with activation energy. Pramana - J Phys 92, 21 (2019). https://doi.org/10.1007/s12043-018-1676-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1676-0

Keywords

PACS

Navigation