Skip to main content
Log in

Three-dimensional unsteady flow of Maxwell fluid with homogeneous–heterogeneous reactions and Cattaneo–Christov heat flux

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This article addresses the unsteady three-dimensional flow of Maxwell fluid. Flow is induced by a bidirectional stretching surface. Fluid fills the porous space. Thermal relaxation time is examined using Cattaneo–Christov heat flux. Homogeneous–heterogeneous reactions are also considered. Suitable transformations are used to convert partial differential equations into nonlinear ordinary differential equations. Convergent series solutions are obtained. Effects of appropriate parameters on the velocity, temperature and concentration fields are examined. It is found that increasing value of Deborah number decreases the fluid flow. Larger values of strength of homogeneous reaction parameter decrease the concentration distribution. Also temperature is decreasing function of thermal relaxation time. Present problem is of great interest in biomedical, industrial and engineering applications like food processing, clay coatings, hydrometallurgical industry, fog formation and dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

uvw :

Velocity components along x-, y- and z-axes, respectively (ms\(^{-1}\) )

T :

Temperature (K)

\(T_{w}\) :

Surface temperature (K)

\(T_{\infty }\) :

Ambient fluid temperature (K)

\(k_{c},\) \(k_{s}\) :

Rate constant

AB :

Chemical species

k :

Thermal conductivity (WK\(^{-1}\)  m\(^{-1}\) )

\({\hat{k}}\) :

Permeability (m\(^{2}\) )

cd :

Stretching constants (s\(^{-1})\)

a, b :

Concentrations of the species A and B

\({\mathbf {q}}\) :

Specific heat flux

\(a_{0}\) :

Positive dimensional constant

\(C_{p}\) :

Specific heat (m\(^{2}\)  s\(^{-2}\) )

\(C_{{\text {f}}x},\) \(C_{{\text {f}}y}\) :

Local skin friction coefficient along x- and y-axes, respectively

\(D_{A}\), \(D_{B}\) :

Diffusion species coefficients

Pr :

Prandtl number

\(u_{w}\) :

Stretching sheet velocity along x-axis (ms\(^{-1})\)

\(v_{w}\) :

Stretching sheet velocity along y-axis (ms\(^{-1})\)

\(Re_{x}, {Re}_{y}\) :

Local Reynolds number

\(A_{1}\) :

Unsteady parameter

Sc :

Schmidt number

K :

Strength of the homogeneous reaction

\(K_{1}\) :

Strength of the heterogeneous reaction

\(\mu\) :

Viscosity (kg m\(^{-2}\,\) s\(^{-1}\) )

\(\upsilon\) :

Kinematic viscosity (m\(^{2}\)  s\(^{-1}\) )

\(\rho\) :

Density (kg m\(^{-3}\) )

\(\lambda _{1}\) :

Heat flux relaxation time

\(\lambda\) :

Retardation time

\(\theta\) :

Dimensionless temperature

\(\xi\) :

Transformed coordinate

\(\alpha\) :

Time constant (s\(^{-1}\) )

\(k_{1}\) :

Porosity parameter

\(\beta _{1}\) :

Deborah number

\(\tau _{{\text {w}}x}\), \(\tau _{{\text {w}}y}\) :

Wall shear stress

\({\mathcal {\gamma }}\) :

Thermal relaxation parameter

\({\mathcal {\beta }}_{2}\) :

Ratio of stretching rates

\(\delta\) :

Ratio of diffusion coefficient

References

  1. Sui J, Zheng L, Zhang X (2016) Boundary layer heat and mass transfer with Cattaneo–Christov double-diffusion in upper-convected Maxwell nanofluid past a stretching sheet with slip velocity. Int J Therm Sci 104:461–468

    Article  Google Scholar 

  2. Jamil M, Fetecau C (2010) Helical flows of Maxwell fluid between coaxial cylinders with given shear stresses on the boundary. Commun Nonlinear Sci Numer Simul 15:3931–3938

    Article  MathSciNet  Google Scholar 

  3. Wang S, Tan W (2011) Stability analysis of soret-driven double-diffusive convection of Maxwell fluid in a porous medium. Int J Heat Fluid Flow 32:88–94

    Article  Google Scholar 

  4. Abbasbandy S, Naz R, Hayat T, Alsaedi A (2014) Numerical and analytical solutions for Falkner–Skan flow of MHD Maxwell fluid. Appl Math Comput 242(1):569–575

    MathSciNet  MATH  Google Scholar 

  5. Awais M, Hayat T, Alsaedi A, Asghar S (2014) Time-dependent three-dimensional boundary layer flow of a Maxwell fluid. Comput Fluids 91:21–27

    Article  MathSciNet  Google Scholar 

  6. Ramesh GK, Gireesha BJ (2014) Influence of heat source/sink on a Maxwell fluid over a stretching surface with convective boundary condition in the presence of nanoparticles. Ain Shams Eng 5:991–998

    Article  Google Scholar 

  7. Ramesh GK, Prasannakumara BC, Gireesha BJ, Shehzad SA, Abbasi FM (2017) Three dimensional flow of Maxwell fluid with suspended nanoparticles past a bidirectional porous stretching surface with thermal radiation. Therm Sci Eng Prog 1:6–14

    Article  Google Scholar 

  8. Ramesh GK, Gireesha BJ, Hayat T, Alsaedi A (2016) Stagnation point flow of Maxwell fluid towards a permeable surface in the presence of nanoparticles. Alex Eng J 55:857–865

    Google Scholar 

  9. Mukhopadhyay S (2012) Heat transfer analysis of the unsteady flow of a Maxwell fluid over a stretching surface in the presence of a heat source/sink. Chin Phys Lett 29:054703

    Article  Google Scholar 

  10. Hayat T, Imtaiz M, Almezal S (2015) Modeling and analysis for three dimensional flow with homogeneous–heterogeneous reactions. AIP Adv 5:107209

    Article  Google Scholar 

  11. Fourier JBJ (1822) Theorie analytique De La chaleur (Paris, 1822)

  12. Cattaneo C (1948) Sulla conduzione del calore. Atti Semin Mat Fis Uni Modena Reggio Emilia 3:83–101

    MathSciNet  MATH  Google Scholar 

  13. Christov CI (2009) On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction. Mech Res Commun 36:481–486

    Article  MathSciNet  Google Scholar 

  14. Ciarletta M, Straughan B (2010) Uniqueness and structural stability for the Cattaneo–Christov equations. Mech Res Commun 37:445–447

    Article  Google Scholar 

  15. Han S, Zheng L, Li C, Zhang X (2014) Coupled flow and heat transfer in viscoelastic fluid with Cattaneo–Christov heat flux model. Appl Math Lett 38:87–93

    Article  MathSciNet  Google Scholar 

  16. Tibullo V, Zampoli V (2011) A uniqueness result for the Cattaneo–Christov heat conduction model applied to incompressible fluids. Mech Res Commun 38:77–79

    Article  Google Scholar 

  17. Straughan B (2010) Porous convection with Cattaneo heat flux. Int J Heat Mass Transf 53:2808–2812

    Article  Google Scholar 

  18. Ramesh GK, Gireesha BJ, Shehzad SA, Abbasi FM (2017) Analysis of heat transfer phenomenon in magnetohydrodynamic Casson fluid flow through Cattaneo–Christov heat diffusion theory. Commun Theor Phys 68:91–95

    Article  MathSciNet  Google Scholar 

  19. Hayat T, Imtiaz M, Alsaedi A, Almezal S (2016) On Cattaneo–Christov heat flux in MHD flow of Oldroyd-B fluid with homogeneous–heterogeneous reactions. J Magn Magn Mater 401:296–303

    Article  Google Scholar 

  20. Liu L, Zheng L, Liu F, Zhang X (2016) Anomalous convection diffusion and wave coupling transport of cells on comb frame with fractional Cattaneo–Christov flux. Commun Nonlinear Sci Numer Simul 38:45–58

    Article  MathSciNet  Google Scholar 

  21. Merkin JH (1996) A model for isothermal homogeneous–heterogeneous reactions in boundary layer flow. Math Comput Model 24:125–136

    Article  MathSciNet  Google Scholar 

  22. Chaudhary MA, Merkin JH (1995) A simple isothermal model for homogeneous-heterogeneous reactions in boundary layer flow I. Equal diffusivities. Fluid Dyn Res 16:311–333

    Article  MathSciNet  Google Scholar 

  23. Bachok N, Ishak A, Pop I (2011) On the stagnation-point flow towards a stretching sheet with homogeneous–heterogeneous reactions effects. Commun Nonlinear Sci Numer Simul 16:4296–4302

    Article  Google Scholar 

  24. Kameswaran PK, Shaw S, Sibanda P, Murthy PVSN (2013) Homogeneous–heterogeneous reactions in a nanofluid flow due to porous stretching sheet. Int J Heat Mass Transf 57:465–472

    Article  Google Scholar 

  25. Khan WA, Pop I (2015) Effects of homogeneous–heterogeneous reactions on the viscoelastic fluid towards a stretching sheet. ASME J Heat Transf 134:064506

    Article  Google Scholar 

  26. Hayat T, Imtiaz M, Alsaedi A (2015) MHD flow of nanofluid with homogeneous—heterogeneous reactions and velocity slip. Therm. Sci. https://doi.org/10.2298/TSCI140922067H

    Article  Google Scholar 

  27. Hayat T, Farooq M, Alsaedi A (2015) Homogeneous–heterogeneous reactions in the stagnation point flow of carbon nanotubes with Newtonian heating. AIP Adv 5:027130

    Article  Google Scholar 

  28. Hayat T, Imtiaz M, Alsaedi A (2015) Effects of homogeneous–heterogeneous reactions in flow of Powell–Eyring fluid. J Cent South Univ 22(8):3211–3216

    Article  Google Scholar 

  29. Sui J, Zheng L, Zhang X, Chen G (2015) Mixed convection heat transfer in power law fluids over a moving conveyor along an inclined plate. Int J Heat Mass Transf 85:1023–1033

    Article  Google Scholar 

  30. Farooq U, Zhao YL, Hayat T, Alsaedi A, Liao SJ (2015) Application of the HAM-based mathematica package BVPh 2.0 on MHD Falkner–Skan flow of nanofluid. Comput Fluids 111:69–75

    Article  MathSciNet  Google Scholar 

  31. Abbasbandy S, Yurusoy M, Gulluce H (2014) Analytical solutions of non-linear equations of power-law fluids of second grade over an infinite porous plate. Math Comput Appl 19(2):124

    MathSciNet  Google Scholar 

  32. Hatami M, Nouri R, Ganji DD (2013) Forced convection analysis for MHD Al\(_2\)O\(_3\)-water nanofluid flow over a horizontal plate. J Mol Liq 187:294–301

    Article  Google Scholar 

  33. Turkyilmazoglu M (2012) Solution of the Thomas–Fermi equation with a convergent approach. Commun Nonlinear Sci Numer Simul 17:4097–4103

    Article  MathSciNet  Google Scholar 

  34. Arqub OA, El-Ajou A (2013) Solution of the frictional epidemic model by homotopy analysis method. J King Saud Univ Sci 25:73–81

    Article  Google Scholar 

  35. Ellahi R, Hassan M, Zeeshan A (2015) Shape effects of nanosize particles in Cu-H\(_2\)O nanofluid on entropy generation. Int J Heat Mass Transf 81:449–456

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Imtiaz.

Ethics declarations

Conflict of interest

The authors confirm that this article content has no conflict of interest.

Additional information

Technical Editor: Cezar Negrao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imtiaz, M., Kiran, A., Hayat, T. et al. Three-dimensional unsteady flow of Maxwell fluid with homogeneous–heterogeneous reactions and Cattaneo–Christov heat flux. J Braz. Soc. Mech. Sci. Eng. 40, 449 (2018). https://doi.org/10.1007/s40430-018-1360-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1360-9

Keywords

Navigation