Skip to main content
Log in

Electromechanical instability of nanobridge in ionic liquid electrolyte media: influence of electrical double layer, dispersion forces and size effect

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, the electromechanical response and instability of the nanobridge immersed in ionic electrolyte media is investigated. The electrochemical force field is determined using double-layer theory and linearized Poisson–Boltzmann equation. The presence of dispersion forces, i.e., Casimir and van der Waals attractions are incorporated considering the correction due to the presence of liquid media between the interacting surfaces (three-layer model). The strain gradient elasticity is employed to model the size-dependent structural behavior of the nanobridge. To solve the nonlinear constitutive equation of the system, three approaches, e.g., the Rayleigh–Ritz method, Lumped parameter model and the numerical solution method are employed. Impacts of the dispersion forces and size effect on the instability characteristics as well as the effects of ion concentration and potential ratio are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C Ke and H D Espinosa Nanoelectromechanical systems (NEMS) and modeling, in Handbook of Theoretical and Computational Nanotechnology (eds.) M Rieth, W Schommers and P D Gennes (Illinois: American Scientific Publishers) Ch 121, p 1 (2006)

  2. J L Muñoz-Gamarra, P Alcaine, E Marigó, J Giner, A Uranga, J Esteve and N. Barniol Microelectron. Eng. 110 246 (2013)

    Article  Google Scholar 

  3. M Dragoman, D Dragoman, F Coccetti, R Plana and A A Muller J. Appl. Phys. 105 054309 (2009)

    Article  ADS  Google Scholar 

  4. A Uranga, J Verd, E Marigó, J Giner, J L Muñóz-Gamarra and N Barniol Sens. Actuators A: Phys. 197 88 (2013)

    Article  Google Scholar 

  5. C Hierold, A Jungen, C Stampfer and T Helbling Sens. Actuators A. 136 51 (2007)

    Article  Google Scholar 

  6. H M Sedighi, Changizian M and A Noghrehabadi Lat. Am. J. Solids Struct. 11 810 (2014)

    Article  Google Scholar 

  7. H Sadeghian and G Rezazadeh Commun. Nonlinear Sci. Numer. Simul. 14 2807 (2009)

    Article  ADS  Google Scholar 

  8. H M Sedighi, F Daneshmand and M Abadyan Compos. Struct. 124 55 (2015)

    Article  Google Scholar 

  9. H M Sedighi Int. J. Appl. Mech. 6(3) 1450030 (2014)

    Article  Google Scholar 

  10. S Rollier, B Legrand, D Collard and L Buchaillot J. Micromech. Microeng. 16 794 (2006)

    Article  ADS  Google Scholar 

  11. O Loh, A Vaziri and H D Espinosa Exp. Mech. 49 105 (2009)

    Article  Google Scholar 

  12. K Oh, J H Chung, S Devasia and J J Riley Lab Chip 9 1561 (2009)

    Article  Google Scholar 

  13. N C Tsai and C Y Sue Sens. Actuators A 134 555 (2007)

    Article  Google Scholar 

  14. J G Boyd and D Kim J. Colloid Interface Sci. 301 542 (2006)

    Article  Google Scholar 

  15. G Gramse, M A Edwards, L Fumagalli and G Gomila Appl. Phys. Lett. 101 213108 (2012)

    Article  ADS  Google Scholar 

  16. G Rezazadeh, M Fathalilou, R Shabani, S Tarverdilou and S Talebian Microsyst. Technol. 15 1355 (2009)

    Article  Google Scholar 

  17. T L Sounart, T A Michalske and K R Zavadil J. Microelectromech. Syst. 14 125 (2005)

    Article  Google Scholar 

  18. A Maali, C Hurth, R Boisgard, C Jai, T Cohen-Bouhacina and J P Aimé J. Appl. Phys. 97 074907 (2005)

    Article  ADS  Google Scholar 

  19. C Y Yang and Y-P Zhao J. Chem. Phys. 120 5366 (2004)

  20. J G Boyd and J Lee J. Colloid Interface Sci. 356 387 (2011)

    Article  Google Scholar 

  21. A Noghrehabadi, M Eslami and M Ghalambaz Int. J. Non Linear Mech. 52 73 (2013)

    Article  ADS  Google Scholar 

  22. E Buks and M L Roukes Phys. Rev. B 63 033402 (2001)

    Article  ADS  Google Scholar 

  23. E Buks and M L Roukes Europhys. Lett. 54 220 (2011)

    Article  ADS  Google Scholar 

  24. A Farrokhabadi, A Koochi and M Abadyan Microsyst. Technol. 20 291 (2013)

    Article  Google Scholar 

  25. A Noghrehabadi, Y Tadi Beni, A Koochi, A S Kazemi, A Yekrangi, M Abadyan and M Noghrehabadi Procedia Eng. 10 3758 (2011)

    Google Scholar 

  26. A Koochi and M Abadyan J. Appl. Sci. 11 3421 (2011)

    Article  ADS  Google Scholar 

  27. J S Duan, R Rach and A M Wazwaz Int. J. Non-Linear Mech. 49 159 (2013)

    Article  ADS  Google Scholar 

  28. W H Lin and Y P Zhao Chin. Phys. Lett. 20 2070 (2003)

    Article  ADS  Google Scholar 

  29. M Dequesnes, S V Rotkin and N R Aluru Nanotechnology 13 120 (2002)

    Article  ADS  Google Scholar 

  30. H M Sedighi H M, F Daneshmand and J Zare Arch. Civ. Mech. Eng. 14(4) 766 (2014)

    Article  Google Scholar 

  31. N A Fleck, G M Muller, M F Ashby and J W Hutchinson Acta Metall. Mater. 42 475 (1994)

    Article  Google Scholar 

  32. J S Stolken and A G Evans Acta Mater. 46 5109 (1998)

    Article  Google Scholar 

  33. D C C Lam, F Yang, A C M Chong, J Wang and P Tong J. Mech. Phys. Solids. 51 1477 (2003)

    Article  ADS  Google Scholar 

  34. B Wang, S Zhou, J Zhao and X Chen J. Micromech. Microeng. 21 027001 (2011)

    Article  ADS  Google Scholar 

  35. B Wang, S Zhou, J Zhao and X Chen Int. J. Precis. Eng. Manuf. 12 1085 (2011)

    Article  Google Scholar 

  36. B Wang, S Zhou, J Zhao and X Chen Int. J. Appl. Math. 4 1250003 (2012)

    Google Scholar 

  37. R Ansari, R Gholami, V Mohammadi and M Faghih Shojaei Compos. Struct. 95 430 (2013)

    Article  Google Scholar 

  38. V Mohammadi, R Ansari, M Faghih Shojaei, R Gholami and S Sahmani Nonlinear Dyn. 73 1515 (2013)

    Article  MathSciNet  Google Scholar 

  39. M Fathalilou, M Sadeghi and G Rezazadeh J. Mech. Sci. Technol. 28 1141 (2014)

    Article  Google Scholar 

  40. A Koochi, H M Sedighi and M Abadyan Lat. Am. J. Solids Struct. 11 1806 (2014)

    Article  Google Scholar 

  41. H M Sedighi, A Koochi and M Abadyan Int. J. Appl. Mech. 6 1450055 (2014)

    Article  Google Scholar 

  42. H M Sedighi Acta Astronaut. 95 111 (2014)

    Article  ADS  Google Scholar 

  43. K W McElhaney, J J Valssak, W D Nix J. Mater. Res. 13 1300 (1998)

    Article  ADS  Google Scholar 

  44. W D Nix and H Gao J. Mech. Phys. Solids 46 411 (1998)

    Article  ADS  Google Scholar 

  45. A C M Chong and D C C Lam J. Mater. Res. 14 4103 (1999)

    Article  ADS  Google Scholar 

  46. Y Cao, D D Nankivil, S Allameh, W O Soboyejo Mater. Manuf. Process. 22 187 (2007)

    Article  Google Scholar 

  47. R K A Al-Rub and G Z Voyiadjis Int. J. Multiscale Comput. Eng. 2 377 (2004)

    Article  Google Scholar 

  48. W Wang, Y Huang, K J Hsia, K X Hu, A Chandra Int. J. Plast. 19 365 (2003)

    Article  Google Scholar 

  49. R Maranganti and P Sharma J. Mech. Phys. Solids 55 1823 (2007)

    Article  ADS  Google Scholar 

  50. K T Chan and Y P Zhao Sci. Chin. Phys. Mech. Astron. 54 1854 (2011)

    Article  ADS  Google Scholar 

  51. M R Ghazavi, G Rezazadeh, S Azizi Sens. Transducers J. 103 132 (2009)

    Google Scholar 

  52. L P Teo Phys. Rev. A 81 032502 (2010)

    Article  ADS  Google Scholar 

  53. J N Israelachvili Intermolecular and Surface Forces (USA: Academic Press) Ch 13 p 253 (2011)

  54. G L Klimchitskaya, U Mohideen and V M Mostepanenko Phys. Rev. A. 61 062107 (2000)

    Article  ADS  Google Scholar 

  55. M Bostrom and B E Sernelius Phys. Rev. B 61 2204 (2000)

    Article  ADS  Google Scholar 

  56. J N Israelachvili and D Tabor Proc R. Soc. A. 331 19 (1972)

    Article  ADS  Google Scholar 

  57. H M Sedighi and K H Shirazi Acta Astronaut. 85 19 (2013)

    Article  ADS  Google Scholar 

  58. R Dargazany, K Hörnes and M Itskov Appl. Math. Comput. 221 833 (2013)

    MathSciNet  Google Scholar 

  59. W H Lin and Y P Zhao Chaos Solitons Fract. 23 1777 (2003)

    Article  ADS  Google Scholar 

  60. W H Lin and Y P Zhao Microsyst. Technol. 11 80 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Abadyan.

Appendix: Lumped parameter model

Appendix: Lumped parameter model

In order to develop a lumped parameter model, a trial solution for deflection of the nanobridge is selected as the following:

$$ W(X) = \frac{{W_{\max}}}{2}\left({1 - \cos \left({\frac{2\pi X}{L}} \right)} \right) $$
(40)

Taking the derivative from total energy of the system [Eq. (22)] with respect to W max and setting the result to zero (e.g., \( \frac{{{\text{d}}\varPi}}{{{\text{d}}W_{\max}}} = 0 \)), yields the load–deflection characteristic equation:

$$ \frac{{\pi^{4} W_{\max} E}}{{4L^{4}}}\left({16ID_{1} + 64I\pi^{2} D_{2} + AW_{\max}^{2}} \right) - f_{\text{ext}} = 0 $$
(41)

Substituting f ext at W = W max in the above relation one can obtain:

$$ \begin{aligned} & \frac{{\pi^{4} W_{\max} E(16ID_{1} + 64I\pi^{2} D_{2} + AW_{\max}^{2})}}{{4L^{4}}} + \frac{{b\varepsilon \varepsilon_{0} \kappa^{2} \psi_{1}^{2} \left[{2\frac{{\psi_{2}}}{{\psi_{1}}}\cosh \left({\kappa (g - W_{\max})} \right) - 1 - \left({\frac{{\psi_{2}}}{{\psi_{1}}}} \right)^{2}} \right]}}{{2\sinh^{2} \left({\kappa (g - W_{\max})} \right)}} \\ & \quad - \left\{{\begin{array}{*{20}c} {\frac{{\bar{A}b}}{{6\pi (g - W_{\max})^{3}}}} \\ {\frac{{\pi^{2} \hbar b}}{{240\sqrt {\tau \upsilon} (g - W_{\max})^{4}}}\,} \\ \end{array}} \right. = 0 \\ \end{aligned} $$
(42)

Using the definition of \( w_{\max} = W_{\max}^{{}}/g \) the dimensionless relation can be written as:

$$ \pi^{4} w_{\max} \left({4D_{1} + 16\pi^{2} D_{2} + \frac{1}{2}w_{\max}^{2} \eta} \right) + \frac{{\beta^{2} [2\lambda \cosh (\xi_{0} (1 - w_{\max})) - 1 - \lambda^{2}]}}{{2\sinh^{2} (\xi_{0} (1 - w_{\max}))}} - \frac{{\alpha_{m}}}{{(1 - w_{\max})^{m}}} = 0 $$
(43)

By rearranging Eq. (43), the relation between applied voltage and the maximum deflection can be obtained in the form of Eq. (37).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimipour, I., Kanani, A., Koochi, A. et al. Electromechanical instability of nanobridge in ionic liquid electrolyte media: influence of electrical double layer, dispersion forces and size effect. Indian J Phys 90, 563–575 (2016). https://doi.org/10.1007/s12648-015-0777-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0777-6

Keywords

PACS Nos.

Navigation