Skip to main content
Log in

Oscillator strength for optical transitions in a cylindrical quantum wire with an inverse parabolic confining electric potential

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Evaluations of oscillator strength for single electron transitions in a cylindrical quantum wire are carried out. In particular, effect of a potential that varies inversely with square of radial distance on the oscillator strength is investigated. Oscillator strength generally decreases as confining potential increases in strength. For l > 0 transitions, oscillator strengths go through local minima, as strength of inverse parabolic potential increases. These local minima percolate from interaction integral and are due to squashing of electron wave functions as confining potential gets stronger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M Moulapanah-Konaroi, M Aliahmad and H Saravani Indian J. Phys. 87 211 (2013)

    Article  ADS  Google Scholar 

  2. S Basu, S K Sarkar and S K Sarkar Indian J. Phys. 87 333 (2013)

    Article  ADS  Google Scholar 

  3. S Saha and N B Manik Indian J. Phys. 86 605 (2012)

    Article  ADS  Google Scholar 

  4. S Harrer, S Strobel, G Scarpa,G Abstreiter, M Tornow and P Lugli IEEE Trans. Nanotechnol. 7 363 (2008)

    Article  ADS  Google Scholar 

  5. J Bomm et al. Beilstein J. Nanotechnol. 1 94 (2010)

  6. Y-Q Bie, Z-M Liao, H-J Xu, X-Z Zhang, X-D Shan and D-P Yu Appl. Phys. A 98 491 (2010)

    Article  ADS  Google Scholar 

  7. P Thébault et al. Adv. Mater. 24 1952 (2012)

  8. S Sarmah and A Kumar Indian J. Phys. 84 1211 (2010)

    Article  ADS  Google Scholar 

  9. N Kumari, A Ghosh, S Tewari and A Bhattacharjee Indian J. Phys. 88 65 (2014)

    Article  Google Scholar 

  10. S Chakrabborty and P Kumbhakar Indian J. Phys. 88 251 (2014)

    Article  Google Scholar 

  11. G Mandal and T Ganguly Indian J. Phys. 85 1229 (2011)

    Article  ADS  Google Scholar 

  12. M A Pal’tsev, V I Kiselev and P G Sveshnikov Her. Russ. Acad. Sci. 79 369 (2009)

    Article  Google Scholar 

  13. C T Lim, J Han, J Guck and H Espinosa Med. Biol. Eng. Comput. 48 941 (2010)

    Article  Google Scholar 

  14. E T Salim Indian J. Phys. 87 349 (2013)

  15. R Chakraborty, U Das, D Mohanta and A Choudhury Indian J. Phys. 83 553 (2009)

    Article  ADS  Google Scholar 

  16. Z L Wang Appl. Phys. A 88 7 (2007)

    Article  ADS  Google Scholar 

  17. R Agarwal and C M Lieber Appl. Phys. A 85 209 (2006)

    Article  ADS  Google Scholar 

  18. M K Roy Eur. Phys. J. B 30 289 (2002)

    Article  ADS  Google Scholar 

  19. S Haffner, M Schmidt, P J Benning, C G Olson, L L Miller and D W Lynch Eur. Phys. J. B 23 69 (2001)

    Article  ADS  Google Scholar 

  20. L Zhang, H J Xie and P M Shao Eur. Phys. J. B 74 397 (2010)

    Article  ADS  Google Scholar 

  21. S Uno, J Hattori, K Nakazato and N Mori J. Comput. Electron. 10 104 (2011)

    Article  Google Scholar 

  22. B Parida, J Sahoo, N Shadangi and P Nayak Indian J. Phys. 84 1333 (2010)

    Article  ADS  Google Scholar 

  23. V D Krevchik and A V Razumov Phys. Solid State 53 2500 (2011)

  24. A Latgé, M de Dios-Leyvaand L E Oliveira Phys. Rev. B 49 10450 (1994)

    Article  ADS  Google Scholar 

  25. V G Stoleru and E Towe Appl. Phys. Lett. 83 5026 (2003)

    Article  ADS  Google Scholar 

  26. V A Harutyunyan Physica E 39 37 (2007)

  27. M Masale Physica E 5 98 (1999)

  28. M Masale Physica B 292 241 (2000)

  29. M Masale Physica B 291 256 (2000)

  30. G P Gupta, V Tayal and A Z Msezane Indian J. Phys. 86 1 (2012)

    Article  ADS  Google Scholar 

  31. Ş Ateş and H H Uğurtan Indian J. Phys. 87 9 (2013)

    Article  ADS  Google Scholar 

  32. G P Gupta and A Z Msezane Indian J. Phys. 88 11 (2014)

    Article  Google Scholar 

  33. M Abramowitz and I A Stegun Handbook of Mathematical Functions: with Formulas, Graphs and Mathematical Tables (Washington: Dover Publications) (1964)

    MATH  Google Scholar 

Download references

Acknowledgments

Author expresses gratitude to Mr. A. A. Chibozha for the invaluable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tshipa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tshipa, M. Oscillator strength for optical transitions in a cylindrical quantum wire with an inverse parabolic confining electric potential. Indian J Phys 88, 849–853 (2014). https://doi.org/10.1007/s12648-014-0501-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-014-0501-y

Keywords

PACS Nos.

Navigation